Linear Algebra HW
 November 10, 2008
 Ali Nesin

1. Show that $\mathbb{Z}[X] /\langle 2 X-1\rangle$ is not a finitely generated \mathbb{Z}-module.
2. Let $f \in \mathbb{Z}[X]$ be a nonzero polynomial. When is $\mathbb{Z}[X] /\langle f\rangle$ a finitely generated \mathbb{Z} module?
3. Let K be a field and $f \in K[X]$ be a polynomial of degree n. Show that $K[X] /\langle f\rangle$ is a K vector space of dimension n.
4. Let V be a vector space of dimension 2. Let $\left\{v_{1}, v_{2}\right\}$ be a basis of V. When is $\left\{v_{1}-v_{2}\right.$, $\left.v_{1}+v_{2}\right\}$ a basis of V ?
5. Let V be a vector space of dimension n. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis of V. Show that

$$
v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, \ldots, v_{1}+v_{2}+\ldots+v_{n}
$$

is a basis of V.
6. Let V be a vector space of dimension n. Let W_{1} and W_{2} be two subpaces such that W_{1} $\cap W_{2}=0$. What can you say about the dimensions of W_{1} and W_{2} ?
7. Let K be a finite field with q elements and V a K-vector space of dimension n.
a) Find the number of subspaces of V of codimension 2.
b) Let W be a subspace of dimension k. Find the number of hyperplanes of V that contain W.
c) Let W be a subspace of dimension k. Find the number of subspaces U of V such that $V=W \oplus U$.
8. Let V be a vector space (of any dimension!).
a) Let X be any subset of V. Show that X contains a maximal linearly independent set.
b) Let X be any generating subset of V. Show that X contains a basis of V.
9. Let K be a field.
a) Show that $K[X] \approx K\left[X^{2}\right]$ both as a ring and a vector space, i.e. as a K-algebra.
b) Find a subspace U of $K[X]$ such that $K[X]=K\left[X^{2}\right] \oplus U$.
10. Let K be a field and $V=K[X] /\left\langle X^{n}-1\right\rangle$. Let A be the K-subalgebra generated by X^{2} (i.e. the subring of V generated by $K \cup\left\{X^{2}\right\}$. When is $V=A$?

