# Lie Algebras HW1 

## Nondegenerate Bilinear Symmetric and Skewsymmetric Forms

Ali Nesin<br>Gümüşlük Akademisi<br>July 23rd, 2000

Let $V$ be a vector space over a field $F$.

1. Let $A$ and $B$ be subspaces of $V$. Show that $\operatorname{dim}(A+B)+\operatorname{dim}(A \cap B)=\operatorname{dim}(A)$ $+\operatorname{dim}(B)$.

Let $f: V \times V \rightarrow F$ be a bilinear map on $V$.
2. Assume $\operatorname{dim}_{F}(V)<\infty$. Let $v_{1}, \ldots, v_{m}$ be a basis of $V$. Let $A=\left(f\left(v_{i}, v_{j}\right)\right)_{i, j} \in$ $\mathrm{M}_{n \times n}(F)$. Show that $f(v, w)=v^{\mathrm{t}} A w$ for all $v, w \in V$.

We say that $f$ is nondegenerate if $f(v, V)=0$ implies $v=0$.
3. Assume $\operatorname{dim}_{F}(V)<\infty$. Show that $f$ is nondegenerate iff the matrix $A$ above is invertible.

Let $v \in V^{\#}$. Let $f_{v}: V \rightarrow F$ be given by $f_{v}(w)=f(v, w)$.
4. Show that $f_{v}$ is linear.
5. Show that if $f$ is nondegenerate then $f_{v}$ is onto.
6. What is $\operatorname{dim}\left(\operatorname{Ker}\left(f_{v}\right)\right)$ ?

We let $v^{\perp}=\operatorname{Ker}\left(f_{v}\right)=\{w \in V: f(v, w)=0\}$ and for $W \leq V$ we let $W^{\perp}=\{v \in V$ : $\left.f_{v}(W)=0\right\}$.
7. Let $W \leq V$ and assume that $W$ is finite dimensional. Show that $\operatorname{dim}(W)+$ $\operatorname{dim}\left(W^{\perp}\right) \geq \operatorname{dim}(V)$. Hint: Consider the map that sends $v \in V$ to $v^{*} \in \operatorname{End}(W, F)$ where $v(w)=f(v, w)$ for all $w \in W$.
8. Show that if $f$ is nondegenerate then there is a $w$ such that $f(v, w)=1$.
9. We assume here that the bilinear nondegenerate form $f$ is skewsymmetric, i.e. that

$$
f(v, v)=0 \text { all } v \in V .
$$

9a. Show that $f(v, w)=-f(w, v)$ for all $v, w \in V$.
If $V=U_{1} \oplus U_{2}$ and $f\left(U_{1}, U_{2}\right)=0$, then we write $V=U_{1} \perp U_{2}$.

9b. Let $v$ and $w$ be as in Question \#7. Show that $V=\langle v, w\rangle \perp\left(v^{\perp} \cap w^{\perp}\right)$
9c. Assume $\operatorname{dim}_{F}(V)<\infty$. Let $A$ be as in Question \#2. Show that $A^{t}=-A$.
9d. Show that if $\operatorname{dim}_{F}(V)<\infty$ then $\operatorname{dim}_{F}(V)$ is even.
9e. Let $\operatorname{dim}_{F}(V)=2 n$. Find a basis $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}$ such that $f\left(v_{i}, v_{j}\right)=f\left(v_{i}, w_{k}\right)$ $=f\left(w_{i}, w_{j}\right)=0$ and $f\left(v_{i}, w_{i}\right)=1$ for all $j, k \neq i$.

Let $A$ be as in question \#2 with respect to the above basis. Find $A$ explicitely.
9f. Let $\operatorname{sp}(V)=\left\{\varphi \in \operatorname{End}_{F}(V)=\operatorname{gl}(V): f(\varphi(v), w)=-f(v, \varphi(w))\right\}$. Show that $\operatorname{sp}(V)$ is a vector space (in fact it is a Lie algebra) over $F$.

9g. Assuming $\operatorname{dim}_{F}(V)=2 n$, show that $\operatorname{sp}(V) \approx\left\{X \in \mathrm{M}_{2 n \times 2 n}(F): X^{t} A=-A X\right\}$.
9h. Assuming $\operatorname{dim}_{F}(V)=2 n$, find $\operatorname{dim}_{F}(\operatorname{sp}(V))$ and a basis of it.
10. We assume here that the bilinear nondegenerate form $f$ is symmetric, i.e. that

$$
f(v, w)=f(w, v) \text { for all } v, w \in V
$$

10a. Show that the matrix $A$ of question 2 is symmetric, i.e. that $A^{\mathrm{t}}=A$.
10b. Let $v \in V$ be such that $f(v, v) \neq 0$. Show that $V=\langle v\rangle \perp v^{\perp}$.
10c. Assume $\operatorname{char}(F) \neq 2$. Show that $V$ has a basis with respect to which the matrix $A$ is diagonal. Can we choose a basis so that $A=\mathrm{Id}$ ? What is the number of nonequivalent symmetric nondegenerate bilinear forms on a vector space of dimension $n$ in terms of $\left|F^{*} / F^{* 2}\right|$ and $n$ ? What about if $F$ is real-closed, finite, algebraically closed or simply square root closed?

10d. Show that if $\operatorname{char}(F)=2$, then $V$ has a basis with respect to which the matrix $A$ is of the form

10e. Let $f$ be defined by the matrix

$$
A=
$$

Show that $A$ is not equivalent to a diagonal matrix if $\operatorname{char}(F)=2$. Show that if $\operatorname{char}(F)$ $\neq 2$ then $A$ is equivalent to a diagonal matrix. Show that if -1 is a square in $F$ then $A$ is equivalent to Id.

