Lie Algebras HW1

Nondegenerate Bilinear Symmetric and Skewsymmetric Forms

Ali Nesin Gümüşlük Akademisi July 23rd, 2000

Let *V* be a vector space over a field *F*.

1. Let A and B be subspaces of V. Show that $\dim(A + B) + \dim(A \cap B) = \dim(A) + \dim(B)$.

Let $f: V \times V \to F$ be a bilinear map on V.

2. Assume $\dim_F(V) < \infty$. Let $v_1, ..., v_m$ be a basis of V. Let $A = (f(v_i, v_j))_{i,j} \in M_{n \times n}(F)$. Show that $f(v, w) = v^t A w$ for all $v, w \in V$.

We say that f is **nondegenerate** if f(v, V) = 0 implies v = 0.

3. Assume $\dim_F(V) < \infty$. Show that f is nondegenerate iff the matrix A above is invertible.

Let $v \in V^{\#}$. Let $f_v : V \to F$ be given by $f_v(w) = f(v, w)$.

- **4.** Show that f_v is linear.
- **5.** Show that if f is nondegenerate then f_v is onto.
- **6.** What is $\dim(\text{Ker}(f_v))$?

We let $v^{\perp} = \text{Ker}(f_v) = \{ w \in V : f(v, w) = 0 \}$ and for $W \leq V$ we let $W^{\perp} = \{ v \in V : f_v(W) = 0 \}$.

- 7. Let $W \le V$ and assume that W is finite dimensional. Show that $\dim(W) + \dim(W^{\perp}) \ge \dim(V)$. Hint: Consider the map that sends $v \in V$ to $v^* \in \operatorname{End}(W, F)$ where v(w) = f(v, w) for all $w \in W$.
 - **8.** Show that if f is nondegenerate then there is a w such that f(v, w) = 1.
- **9.** We assume here that the bilinear nondegenerate form f is **skewsymmetric**, i.e. that

$$f(v, v) = 0$$
 all $v \in V$.

9a. Show that f(v, w) = -f(w, v) for all $v, w \in V$. If $V = U_1 \oplus U_2$ and $f(U_1, U_2) = 0$, then we write $V = U_1 \perp U_2$.

- **9b.** Let v and w be as in Question #7. Show that $V = \langle v, w \rangle \perp (v^{\perp} \cap w^{\perp})$
- **9c.** Assume $\dim_F(V) < \infty$. Let A be as in Question #2. Show that $A^t = -A$.
- **9d.** Show that if $\dim_F(V) < \infty$ then $\dim_F(V)$ is even.
- **9e.** Let $\dim_F(V) = 2n$. Find a basis $v_1, ..., v_n, w_1, ..., w_n$ such that $f(v_i, v_j) = f(v_i, w_k) = f(w_i, w_i) = 0$ and $f(v_i, w_i) = 1$ for all $j, k \neq i$.

Let A be as in question #2 with respect to the above basis. Find A explicitely.

- **9f.** Let $\operatorname{sp}(V) = \{ \varphi \in \operatorname{End}_F(V) = \operatorname{gl}(V) : f(\varphi(v), w) = -f(v, \varphi(w)) \}$. Show that $\operatorname{sp}(V)$ is a vector space (in fact it is a Lie algebra) over F.
 - **9g.** Assuming $\dim_F(V) = 2n$, show that $\operatorname{sp}(V) \approx \{X \in M_{2n \times 2n}(F) : X^t A = -AX\}$.
 - **9h.** Assuming $\dim_F(V) = 2n$, find $\dim_F(\operatorname{sp}(V))$ and a basis of it.
 - **10.** We assume here that the bilinear nondegenerate form f is symmetric, i.e. that f(v, w) = f(w, v) for all $v, w \in V$.
 - **10a.** Show that the matrix A of question 2 is symmetric, i.e. that $A^{t} = A$.
 - **10b.** Let $v \in V$ be such that $f(v, v) \neq 0$. Show that $V = \langle v \rangle \perp v^{\perp}$.
- **10c.** Assume char(F) \neq 2. Show that V has a basis with respect to which the matrix A is diagonal. Can we choose a basis so that A = Id? What is the number of nonequivalent symmetric nondegenerate bilinear forms on a vector space of dimension n in terms of $|F^*/F^{*2}|$ and n? What about if F is real-closed, finite, algebraically closed or simply square root closed?
- **10d.** Show that if char(F) = 2, then V has a basis with respect to which the matrix A is of the form

10e. Let *f* be defined by the matrix

A =

Show that A is not equivalent to a diagonal matrix if char(F) = 2. Show that if $char(F) \ne 2$ then A is equivalent to a diagonal matrix. Show that if -1 is a square in F then A is equivalent to Id.