Linear Algebra May 2006

Do only (and only) one of the two problems.

I. Let *K* be a field of characteristic $\neq 2$ and *n* an integer. Let $V = K^n$. Let $f: V \times V \to K$ be a nondegenerate, bilinear and symmetric form. Let $U_n(K, f) = \{g \in GL_n(K) : f(v, w) = f(gv, gw)\}$. Show that if $g \in O_n(K, f)$ then det $g = \pm 1$. Let $SO_n(K, f) = \{g \in O_n(K, f) : \det g = 1\}$. Let $PSO_n(K, f) = SO_n(K, f)/Z(SO_n(K, f))$.

For $K = \mathbb{C}$, \mathbb{R} or a finite field F_q and various *n* and various *f*'s study the groups $O_n(K, f)$, $SO_n(K, f)$ and $PSO_n(K, f)$.

II. Classify nondegenerate, bilinear, symmetric forms over a field of characteristic 2.