Linear Algebra Final

June 2006
Ali Nesin

1. Let K be a field. We will define a "geometry" $\pi=\pi(K)$ of lines and points as follows: Let ∞ be a new symbol. The "geometry" π will have three sorts of points:

- the elements (x, y) of $K \times K$. These are called "affine points" of π.
- for each $m \in K,(m)$ will be a point of K. These points are called "points at infinity".
- (∞) will be a point of π. This is also a "point at infinity".

The lines of π will be

- the non vertical "affine lines" of $K \times K$ of the form

$$
[m, b]:=\{(x, y): y=m x+b\} \cup\{(m)\}
$$

for all $m, b \in K$.

- the vertical "affine" lines of $K \times K$ of the form

$$
[a]:=\{(a, y): y \in K\} \cup\{(\infty)\}
$$

for all $m \in K$.

- the line at infinity $[\infty]:=\{(m): m \in K\} \cup\{(\infty)\}$.
a) Show that any two distinct lines intersect at a unique point.
b) Show that through any two distinct points a unique line passes.
c) Show that there are four points such that no three of which are collinear.
d) Assume $K=\mathbf{F}_{q}$, the field with q elements. Find the number of points on each line, the number of lines through each line and the total number of lines and points. In case $q=$ 2 , represent the points and the lines of the geometry visually on your exam paper.

2. A collection of subsets (called "lines") of a set P of "points" is called a projective plane if the properties $\mathrm{a}, \mathrm{b}, \mathrm{c}$ above hold.
a) Show that in a projective plane there is a one two one correspondance between the set of points of any two lines.
b) Show that in a projective plane there is a one two one correspondance between the set of lines that pass through any two points.
c) Show that if in a projective plane a line has $n+1$ points, then through any point $n+1$ lines pass and the total number of points is $n^{2}+n+1$ and the total number of lines is $n^{2}+n+$ 1 as well.
d) Show that if in a projective plane we exchange the roles of lines and points, we again obtain a projective plane.
e) Define the concept of isomorphism of projective planes. Define the concept of automorphism of a projective plane.
3. Let K be a field. We will define a "geometry" $\pi^{\prime}=\pi^{\prime}(K)$ of lines and points as follows:

The lines of π^{\prime} will be the subspaces of K^{3} of dimension 2 (i.e. planes passing through the origin $(0,0,0)$).

The points of π^{\prime} will be the subspaces of K^{3} of dimension 1 (i.e. lines passing through the origin ($0,0,0$)).

A point of π^{\prime} will be said to lie on a line of π^{\prime} if the subspace of dimension 1 that represents the point is a subset of the subspace of dimension 2 that represents the line.
a) Show that π^{\prime} is a projective plane.
b) Show that any element of $\mathrm{GL}_{3}(K)$ gives rise naturally to an automorphism of π^{\prime}. Show that the scalars act trivially on π^{\prime}. Deduce that $\mathrm{PGL}_{3}(K)$ embeds in Aut $\left(\pi^{\prime}\right)$.
c) Show that $\operatorname{Aut}(K)$ embeds in $\operatorname{Aut}\left(\pi^{\prime}\right)$.
d) Show that $\pi^{\prime} \approx \pi(K)$.
e) Find Aut π.

