PART I.

1. Let \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) be defined by \(f(x, y, z) = (x - y, 0, 2x - 2y, x + y - 2z) \).

 1.1. Show that \(f \) is a linear map.

 1.2. Find a basis of \(\text{Im}(f) \).

 1.3. Find a basis of \(\text{Ker}(f) \).

2. Let \(W = \{(x - y, x - y + z, z, 0, 2z) : x, y, z \in \mathbb{R}\} \) be a subspace of \(\mathbb{R}^5 \). Find a basis of the quotient space \(\mathbb{R}^5/W \).

3. Let \(f : V \rightarrow W \) be a linear map between two vector spaces \(V \) and \(W \). Show that if \(v_1, \ldots, v_n \in V \) are such that \(f(v_1), \ldots, f(v_n) \) are linearly independent, then \(v_1, \ldots, v_n \) are also linearly independent.

4. Let \(V \) be a vector space and \(A \) and \(B \) be two subspaces of \(V \). Show that \(A + B = \text{Vect}(A \cup B) \).

5. Let \(V \) and \(W \) be two vector spaces of dimension \(n \) and \(m \) over the same field \(K \). What is the dimension of \(V \times W \)?

6. Let \(V \) be a vector space and \(U \) and \(W \) be two subspaces of \(V \). Show that
 \[\dim(U + W) + \dim(U \cap V) = \dim U + \dim V. \]
 (Hint: Consider the map \(f : U \times V \rightarrow U + V \) given by \(f(u, v) = u + v \).

PART II

Let \(V \) be a vector space over a field \(K \). Let \(\text{GL}(V) \) denote the group of automorphisms of \(V \). If \(\phi \in \text{GL}(V) \), we say that \(\lambda \in K \) is an eigenvalue of \(\phi \) if \(\phi(v) = \lambda v \) for some \(v \in V^\phi := V \setminus \{0\} \).

1. Let \(\phi \in \text{GL}_K(V) \) have finite order \(n \) and \(\lambda \in K \) be an eigenvalue of \(\phi \). Show that \(\lambda^n = 1 \). Should such a \(\phi \) have to have eigenvalues?

2. Let \(V \) be a vector space over a field \(K \) of characteristic \(p > 0 \). Let \(\phi \in \text{End}_K(V) \).

 2a. Show that \((\phi - 1)^p = \phi^p - 1 \).

 2b. Conclude that if \(\phi \) has order \(p^k \) for some \(k > 0 \), then a nonzero vector of \(V \) is fixed by \(\phi \).

A field \(K \) is called algebraically closed if all nonzero polynomials \(f \in K[X] \) have a root in \(K \).
3. Assume \(\dim_K(V) < \infty \) and \(K \) is an algebraically closed field. Let \(A \leq \text{GL}_K(V) \) be an abelian group. Show that the elements of \(A \) have a common nonzero eigenvector. (Hint: By induction on \(\dim V \)).

4. (Schur’s Lemma) Let \(R \) be a ring and \(M \) and \(N \) be two irreducible left \(R \)-modules.

 4a. Show that any homomorphism \(\varphi : M \to N \) is either 0 or an isomorphism.
 4b. Show that \(\text{End}_R(M) \) is a division ring.

5. Assume \(V \) is a vector space of finite dimension over a field \(K \). Let \(A \in \text{End}_K(V) \).

 5a. Show that the subring \(K[A] \) of \(\text{End}_K(V) \) generated by \(A \) and the scalar multiplications \(\lambda \text{Id}_V \) (for \(\lambda \in K \)) is isomorphic to \(K[X]/(f) \) for some polynomial \(f \in K[X] \).
 5b. Can you bound the degree of \(f \) in terms of \(\dim_K(V) \)?
 5c. Find \(f \) when

\[
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad K = \mathbb{Z}/7\mathbb{Z} \text{ and } A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}
\]

6. Consider \(\mathbb{Z} \times \mathbb{Z} \) as a group (i.e. as a \(\mathbb{Z} \)-module). For \(A \in \text{End}_\mathbb{Z}(\mathbb{Z} \times \mathbb{Z}) \) consider the subring \(\mathbb{Z}[A] \) of \(\text{End}_\mathbb{Z}(\mathbb{Z} \times \mathbb{Z}) \) generated by \(A \).

 6a. Find the number of minimal generators of \(\mathbb{Z}[A] \) as a \(\mathbb{Z} \)-module when

\[
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

 6b. Find the invertible and nilpotent elements of \(\mathbb{Z}[A] \) and its idempotents\(^1\).

\(^1\) An element \(r \) of a ring is nilpotent if \(r^n = 0 \) for some \(n \) and it is idempotent if \(r^2 = r \).