Math 231 Linear Algebra

Midterm 1 November 2005 Ali Nesin

PART I.

1. Let $f : \mathbb{R}^3 \to \mathbb{R}^4$ be defined by f(x, y, z) = (x - y, 0, 2x - 2y, x + y - 2z). **1.1.** Show that *f* is a linear map. **1.2.** Find a basis of Im(*f*). **1.3.** Find a basis of Ker(*f*).

2. Let $W = \{(x - y, x - y + z, z, 0, 2z) : x, y, z \in \mathbb{R}\}$. *W* is a subspace of \mathbb{R}^5 . Find a basis of the quotient space \mathbb{R}^5/W .

3. Let $f: V \to W$ be a linear map between two vector spaces V and W. Show that if $v_1, ..., v_n \in V$ are such that $f(v_1), ..., f(v_n)$ are linearly independent, then $v_1, ..., v_n$ are also linearly independent.

4. Let *V* be a vector space and *A* and *B* be two subspaces of *V*. Show that $A + B = Vect(A \cup B)$.

5. Let *V* and *W* be two vector spaces of dimension *n* and *m* over the same field *K*. What is the dimension of $V \times W$.

6. Let V be a vector space and U and W be two subspaces of V. Show that $\dim(U+W) + \dim(U \cap V) = \dim U + \dim V.$ (Hint: Consider the map $f: U \times V \rightarrow U + V$ given by f(u, v) = u + v.

PART II

Let *V* be a vector space over a field *K*. Let GL(V) denote the group of automorphisms of *V*. If $\varphi \in GL(V)$, we say that $\lambda \in K$ is an eigen value of φ if $\varphi(v) = \lambda v$ for some $v \in V^{\#} := V \setminus \{0\}$.

1. Let $\varphi \in GL_K(V)$ have finite order *n* and $\lambda \in K$ be an eigenvalue of φ . Show that $\lambda^n = 1$. Should such a φ have to have eigenvalues?

2. Let *V* be a vector space over a field *K* of characteristic p > 0. Let $\varphi \in \text{End}_{K}(V)$.

2a. Show that $(\varphi - 1)^{p^{k}} = \varphi^{p^{k}} - 1$.

2b. Conclude that if φ has order p^k for some k > 0, then a nonzero vector of V is fixed by φ .

A field K is called algebraically closed if all nonzero polynomials $f \in K[X]$ have a root in K.

3. Assume $\dim_K(V) < \infty$ and *K* is an algebraically closed field. Let $A \le \operatorname{GL}_K(V)$ be an abelian group. Show that the elements of *A* have a common nonzero eigenvector. (Hint: By induction on dim *V*).

4. (Schur's Lemma) Let R be a ring and M and N be two irreducible left R-modules.

4a. Show that any homomorphism $\varphi : M \to N$ is either 0 or an isomorphism.

4b. Show that $\operatorname{End}_R(M)$ is a division ring.

5. Assume *V* is a vector space of finite dimension over a field *K*. Let $A \in \text{End}_{K}(V)$. 5a. Show that the subring K[A] of $\text{End}_{K}(V)$ generated by *A* and the scalar multiplications λId_{V} (*for* $\lambda \in K$) is isomorphic to $K[X]/\langle f \rangle$ for some polynomial $f \in K[X]$.

5b. Can you bound the degree of *f* in terms of $\dim_{K}(V)$? 5c. Find *f* when

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$K = \mathbb{Z}/7\mathbb{Z} \text{ and } A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$

6. Consider $\mathbb{Z} \times \mathbb{Z}$ as a group (i.e. as a \mathbb{Z} -module). For $A \in \operatorname{End}_{\mathbb{Z}}(\mathbb{Z} \times \mathbb{Z})$ consider the subring $\mathbb{Z}[A]$ of $\operatorname{End}_{\mathbb{Z}}(\mathbb{Z} \times \mathbb{Z})$ generated by *A*.

6a. Find the number of minimal generators of $\mathbb{Z}[A]$ as a \mathbb{Z} -module when

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

6b. Find the invertible and nilpotent elements of $\mathbb{Z}[A]$ and its idempotents¹.

¹ An element *r* of a ring is nilpotent if $r^n = 0$ for some *n* and it is idempotent if $r^2 = r$.