Math 231 Linear Algebra

Midterm 1
November 2005
Ali Nesin

PART I.

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by $f(x, y, z)=(x-y, 0,2 x-2 y, x+y-2 z)$.
1.1. Show that f is a linear map.
1.2. Find a basis of $\operatorname{Im}(f)$.
1.3. Find a basis of $\operatorname{Ker}(f)$.
2. Let $W=\{(x-y, x-y+z, z, 0,2 z): x, y, z \in \mathbb{R}\}$. W is a subspace of \mathbf{R}^{5}. Find a basis of the quotient space \mathbb{R}^{5} / W.
3. Let $f: V \rightarrow W$ be a linear map between two vector spaces V and W. Show that if $v_{1}, \ldots, v_{n} \in V$ are such that $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ are linearly independent, then v_{1}, \ldots, v_{n} are also linearly independent.
4. Let V be a vector space and A and B be two subspaces of V. Show that $A+B=$ $\operatorname{Vect}(A \cup B)$.
5. Let V and W be two vector spaces of dimension n and m over the same field K. What is the dimension of $V \times W$.
6. Let V be a vector space and U and W be two subspaces of V. Show that

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap V)=\operatorname{dim} U+\operatorname{dim} V .
$$

(Hint: Consider the map $f: U \times V \rightarrow U+V$ given by $f(u, v)=u+v$.

PART II

Let V be a vector space over a field K. Let $\mathrm{GL}(V)$ denote the group of automorphisms of V. If $\varphi \in \operatorname{GL}(V)$, we say that $\lambda \in K$ is an eigen value of φ if $\varphi(v)=$ λv for some $v \in V^{\#}:=V \backslash\{0\}$.

1. Let $\varphi \in \mathrm{GL}_{K}(V)$ have finite order n and $\lambda \in K$ be an eigenvalue of φ. Show that $\lambda^{n}=1$. Should such a φ have to have eigenvalues?
2. Let V be a vector space over a field K of characteristic $p>0$. Let $\varphi \in \operatorname{End}_{K}(V)$.

2a. Show that $(\varphi-1)^{p^{k}}=\varphi^{p^{k}}-1$.
2 b . Conclude that if φ has order p^{k} for some $k>0$, then a nonzero vector of V is fixed by φ.

A field K is called algebraically closed if all nonzero polynomials $f \in K[X]$ have a root in K.
3. Assume $\operatorname{dim}_{K}(V)<\infty$ and K is an algebraically closed field. Let $A \leq \mathrm{GL}_{K}(V)$ be an abelian group. Show that the elements of A have a common nonzero eigenvector. (Hint: By induction on $\operatorname{dim} V$).
4. (Schur's Lemma) Let R be a ring and M and N be two irreducible left R modules.

4a. Show that any homomorphism $\varphi: M \rightarrow N$ is either 0 or an isomorphism.
4b. Show that $\operatorname{End}_{R}(M)$ is a division ring.
5. Assume V is a vector space of finite dimension over a field K. Let $A \in \operatorname{End}_{K}(V)$.

5a. Show that the subring $K[A]$ of $\operatorname{End}_{K}(V)$ generated by A and the scalar multiplications $\lambda \operatorname{Id}_{V}($ for $\lambda \in K)$ is isomorphic to $K[X] /\langle f\rangle$ for some polynomial $f \in$ $K[X]$.

5 b. Can you bound the degree of f in terms of $\operatorname{dim}_{K}(V)$?
5c. Find f when

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
K=\mathbb{Z} / \not \subset \mathbb{Z} \text { and } A=\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

6. Consider $\mathbb{Z} \times \mathbb{Z}$ as a group (i.e. as a \mathbb{Z}-module). For $A \in \operatorname{End} \mathbb{Z}(\mathbb{Z} \times \mathbb{Z})$ consider the subring $\mathbb{Z}[A]$ of $\operatorname{End} \mathbb{Z}(\mathbb{Z} \times \mathbb{Z})$ generated by A.

6 a. Find the number of minimal generators of $\mathbb{Z}[A]$ as a \mathbb{Z}-module when

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

6 b . Find the invertible and nilpotent elements of $\mathbb{Z}[A]$ and its idempotents ${ }^{1}$.

[^0]
[^0]: ${ }^{1}$ An element r of a ring is nilpotent if $r^{n}=0$ for some n and it is idempotent if $r^{2}=r$.

