1. Let G be a group. The equation $(x y)^{n}=x^{n} y^{n}$ holds for all $x, y \in G$ if and only if G is abelian.
2. Describe the symmetry group of an isosceles triangle that is not equilateral.
3. Find a group G and subgroups H and K of G such that $H \unlhd K$ and $K \unlhd G$ and $H \nsubseteq G$.
4. Find all groups which have exactly three subgroups.
5. \mathbb{Q} is not finitely generated.
6. Let G be a group, and let G^{G} be the set of all functions from G into G. For α, $\beta \in G^{G}$, define $\alpha+\beta \in G^{G}$ by declaring $x^{\alpha+\beta}:=x^{\alpha} x^{\beta}$ for all $x \in G$. Is G^{G} a ring under this addition and the composition of maps?
7. Let G, G^{G} and + be as in the previous question. If α and $\beta \in G^{G}$ are homomorphisms, what is the necessary and sufficient condition for $\alpha+\beta$ to be a homomorphism?
8. Let $C_{n}=\langle g\rangle$ be a cyclic group of order $n \in N$. A homomorphism $\varphi: C_{n} \longrightarrow H$, where H is an arbitrary group, is completely determined by $g \varphi$. A homomorphism $\varphi: C_{n} \longrightarrow C_{n}$ is an automorphism if and only if $o(g \varphi)=n$. Prove that $\operatorname{Aut}\left(C_{n}\right) \cong$ \mathbb{Z}_{n}^{\times}.
9. Let $S_{3}=\langle a, b, c\rangle$ be the symmetric group on 3 letters, $a:=(12), b:=(13)$, $c:=(23)$. A homomorphism $\varphi: S_{3} \longrightarrow H$, where H is an arbitrary group, is completely determined by $a \varphi, b \varphi$ and $c \varphi$. What are the necessary and sufficient conditions for a homomorphism $\varphi: S_{3} \longrightarrow S_{3}$ to be an automorphism? Prove that $\operatorname{Aut}\left(S_{3}\right) \cong S_{3}$.
10. Prove that $\operatorname{Aut}\left(V_{4}\right) \cong S_{3}$ and $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$.
11. Let $\langle a\rangle$ and $\langle b\rangle$ be cyclic groups of order 2 . The free product $F=\langle a\rangle *\langle b\rangle$ is an infinite dihedral group.
12. Suppose that a finite group G acts on a set X, and put $\operatorname{Fix}_{X}(g):=\{x \in X$: $x g=x\}$. Then the number of orbits is given by the formula $\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix}_{X}(g)$.
13. If $\sigma=(12)(34) \in S_{4}$ and $\tau=\left(\begin{array}{llll}1 & 2 & 4 & 4 \\ 2 & 3 & 4 & 1\end{array}\right) \in S_{4}$, what is σ^{τ} ? Generalize. Describe the conjugacy classes of S_{4}.
14. Describe the conjugacy classes of S_{5}, of S_{n}. How many elements are there in each class?
15. Find the conjugacy classes of A_{5} and the number of elements in each class. Conclude that A_{5} is a simple group.
16. Let p, q, r be distinct prime numbers. If G is a group of order $p q r$, then G is
not simple.
17. Let G be a finite group, H a subgroup of G. Let P be a Sylow p-subgroup of G.

If $H \unlhd G$, then $H \cap P$ is a Sylow p-subgroup of H. If $H \nexists G$, then $H \cap P$ is not necessarily a Sylow p-subgroup of H. Any Sylow p-subgroup of H has the form $H \cap P^{\prime}$, where P^{\prime} is a Sylow p-subgroup of G.

