Linear Algebra

Midterm

November 2005
Ali Nesin

1. True or false? (You have to explain the reason of your answer) (8 pts.)
i. $\left\{(x, y, z) \in \mathbb{R}^{3}: x+y-z=x y z\right\}$ is a subspace of \mathbb{R}^{3}.
ii. $\left\{(x, y, z) \in \mathbb{R}^{3}: x y z \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
iii. $\left\{(x, y, z) \in \mathbb{R}^{3}: x y z \in \mathbb{Q}\right\}$ is a vector space over \mathbb{R}.
iv. $\{(x, y, z): x+y-z \in \mathbb{Q}\}$ is a vector space over \mathbb{Q}.
v. $\{(x, 2 y, 3 z): x, y, z \in \mathbb{R}\}$ is a subspace of \mathbb{R}^{3}.
vi. $\left\{(x, y, z) \in \mathbb{R}^{3}: x y=z\right\}$ is a subspace of \mathbb{R}^{3}.
vii. $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2} \geq 0\right\}$ is a subspace of \mathbb{R}^{3}.
viii. $\left\{\left(x+y, y^{2}, y\right): x, y, z \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
2. True or false? (Explain) (8 pts.)
i. If every proper subspace of a vector space has finite dimension then the vector space has finite dimension.
ii. A subspace of a subspace of a vector space V is a subspace of V.
iii. $\quad \mathbb{R}^{2}$ has infinitely many subspaces of dimension 1 .
iv. $\quad \mathbb{R}^{2}$ has finitely many subspaces of dimension 2 .
v. The only vector space with finitely many subspaces is the trivial vector space $\{0\}$.
vi. If A and B are subspaces of the vector space V, then $A \cap B$ is also a subspace of V.
vii. The vectors v, w and $v+w$ of a vector space can never be linearly independent.
viii. The vectors $v-w$ and $v+w$ of a vector space over \mathbb{R} are linearly independent.
3. Let $V \neq\{0\}$ be a vector space over \mathbb{R}. Show that there is a proper subspace $W<V$ and a vector $v \in V$ such that

$$
V=\{w+\lambda v: w \in W, \lambda \in \mathbb{R}\} .
$$

(10 pts.)
4. Find a basis of the subspace of \mathbb{R}^{5} generated by the vectors
$(1,2,3,-1,0),(2,-1,0,1,1),(8,1,6,1,3),(3,1,3,0,1)$.
(8 pts .)
5. Let $V=\left\{(x, y, z, t, u) \in \mathbb{R}^{5}: x+y+z-t+u=0\right\}$ and
$W=\{(x, y, z, t, u) \in V: 2 x-2 y+z-t+u=0$ and $2 x-3 t=0\}$.
i. Find bases of V and W. ($4+6$ pts.)
ii. Find a subspace S such that $V+S=\mathbb{R}^{5}$. (8 pts.)
iii. Find a subspace U such that $W+U=V$ and $W \cap U=\{0\}$. (8 pts.)
6. Let U and V be subspace of a vector space
i. Show that the set $U+V$ defined by

$$
\{u+v: u \in U, v \in V\}
$$

is also a subspace. (8 pts .)
ii. \quad Suppose that $\operatorname{dim} U$ and $\operatorname{dim} V$ are finite. Show that $\operatorname{dim}(U+V)$ $\leq \operatorname{dim} U+\operatorname{dim} V$. (12 pts.)
iii. Give an example where $\operatorname{dim}(U+V)<\operatorname{dim} U+\operatorname{dim} V$. (8 pts. $)$
7. Show that a vector space of $\operatorname{dim} n$ over \mathbb{C} can be regarded as a vector space of dimension $2 n$ over \mathbb{R}. (12 pts.)

