Math 231 (Linear Algebra)

Final
January 17, 2004
Ali Nesin
I. Let K be a field, A a set and Π a set of subsets of A. Let V be the set of all functions from A into K. Clearly V is a vector space over K with the usual operations (addition and scalar multiplication). Let $V(\Pi)$ be the set of elements of V that vanish on some subset that belongs to Π. Thus,

$$
V(\Pi)=\{f: A \rightarrow K: \text { there is } X \in \Pi \text { such that } f=0 \text { on } X\} .
$$

Find the necessary and sufficent condition on Π for $V(\Pi)$ to be a subspace of V. (10 pts.)
II. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $\varphi(x, y)=(x-y, 2 x, y)$. Let

$$
\begin{aligned}
& e_{1}=(1,2), e_{2}=(3,1) . \\
& f_{1}=(1,1,1), f_{2}=(1,0,-1), f_{3}=(0,1,1) .
\end{aligned}
$$

Find the matrix of φ with respect to these bases. (10 pts .)
III. Let V be a vector space over a field F. Let $\varphi: V \rightarrow V$ be a linear map. A nonzero vector $v \in V$ is called an eigenvector of φ if $\varphi(v)=\alpha v$ for some $\alpha \in F$. Such a scalar α is called an eigenvalue of φ. For $\alpha \in F$ we let $V_{\alpha}=\{v \in V: \varphi(v)=\alpha v\}$.
III.1. Show that V_{α} is a subspace of V. (2 pts.)
III.2. Find all the eigenvalues and the corresponding eigenvectors of the linear map $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$. (10 pts. $)$
III.3. Let V be the vector space of real sequences and let φ be the linear map from V into V defined by $\varphi\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$. Find the eigenvalues and eigenvectors of φ. (4 pts.)
III.4. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation (around $(0,0)$ of course, otherwise φ is not linear). Can φ have an eigenvalue? (10 pts.)
III.5. Assume V is finite dimensional. Show that α is an eigenvalue for φ if and only if α is a root of the polynomial $\operatorname{det}\left(\varphi-X \operatorname{Id}_{V}\right)=0$. (Here I assume that you know that a linear map from a finite dimensional vector space into itself is invertible iff its determinant is nonzero). Check this result on Question 2. Conclude that a linear map \mathbb{R}^{3} into itself has always an eigenvector. (10 pts.)
III.6. Show that if $\left(\alpha_{i}\right)_{i}$ are all distinct scalars and $0 \neq v_{i} \in V_{\alpha_{i}}$, then the set $\left(v_{i}\right)_{i}$ is a linearly independent set. In other words, show that the subspace spanned by the subspaces V_{α} is a direct sum of them (10 pts.)
III.7. Assume that V is finite dimensional. Show that $V=\oplus_{i} V_{\alpha_{i}}$ if and only if there is a basis of V in which the matrix of φ is diagonal. (10 pts.)
III.8. Find a basis of \mathbb{R}^{2} in which the matrix of the linear map φ in Question III. 2 is diagonal. (10 pts.).

