Math 231 (Linear Algebra)

Final January 17, 2004

Ali Nesin

I. Let *K* be a field, *A* a set and Π a set of subsets of *A*. Let *V* be the set of all functions from *A* into *K*. Clearly *V* is a vector space over *K* with the usual operations (addition and scalar multiplication). Let *V*(Π) be the set of elements of *V* that vanish on some subset that belongs to Π . Thus,

 $V(\Pi) = \{ f : A \to K : \text{ there is } X \in \Pi \text{ such that } f = 0 \text{ on } X \}.$ Find the necessary and sufficient condition on Π for $V(\Pi)$ to be a subspace of V. (10 pts.)

II. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $\varphi(x, y) = (x - y, 2x, y)$. Let $e_1 = (1, 2), e_2 = (3, 1).$ $f_1 = (1, 1, 1), f_2 = (1, 0, -1), f_3 = (0, 1, 1).$ Find the matrix of φ with respect to these bases. (10 pts.)

III. Let *V* be a vector space over a field *F*. Let $\varphi : V \to V$ be a linear map. A nonzero vector $v \in V$ is called an **eigenvector** of φ if $\varphi(v) = \alpha v$ for some $\alpha \in F$. Such a scalar α is called an **eigenvalue** of φ . For $\alpha \in F$ we let $V_{\alpha} = \{v \in V : \varphi(v) = \alpha v\}$.

III.1. Show that V_{α} is a subspace of *V*. (2 pts.)

III.2. Find all the eigenvalues and the corresponding eigenvectors of the linear map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. (10 pts.)

III.3. Let *V* be the vector space of real sequences and let φ be the linear map from *V* into *V* defined by $\varphi(x_0, x_1, x_2, ...) = (x_1, x_2, x_3,...)$. Find the eigenvalues and eigenvectors of φ . (4 pts.)

III.4. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation (around (0,0) of course, otherwise φ is not linear). Can φ have an eigenvalue? (10 pts.)

III.5. Assume *V* is finite dimensional. Show that α is an eigenvalue for φ if and only if α is a root of the polynomial det($\varphi - XId_V$) = 0. (Here I assume that you know that a linear map from a finite dimensional vector space into itself is invertible iff its determinant is nonzero). Check this result on Question 2. Conclude that a linear map \mathbb{R}^3 into itself has always an eigenvector. (10 pts.)

III.6. Show that if $(\alpha_i)_i$ are all distinct scalars and $0 \neq v_i \in V_{\alpha_i}$, then the set $(v_i)_i$ is a linearly independent set. In other words, show that the subspace spanned by the subspaces V_{α} is a direct sum of them (10 pts.)

III.7. Assume that *V* is finite dimensional. Show that $V = \bigoplus_i V_{\alpha_i}$ if and only if there is a basis of *V* in which the matrix of φ is diagonal. (10 pts.)

III.8. Find a basis of \mathbb{R}^2 in which the matrix of the linear map φ in Question III.2 is diagonal. (10 pts.).