Math 217 Linear Algebra
 Final Exam

Fabruary 4, 2006

1. Prove or disprove: For the nonzero matrices A, B and C, if $A B=A C$ then $B=C$. (3 pts.)
2. Prove or disprove: For matrices A and B, if B is the inverse of A^{2} then $A B$ is the inverse of A. (3 pts .)
3. Find the inverse of the matrix $\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$. (6 pts.)
4. Show that the inverse of the $n \times n$ matrix $\left(\begin{array}{rrlr}n & -1 & \cdots & -1 \\ -1 & n & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n\end{array}\right)$ is of the form

$$
\frac{1}{n+1}\left(\begin{array}{cccc}
c & 1 & \cdots & 1 \\
1 & c & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & c
\end{array}\right) \text { for some } c . \text { (6 pts.) }
$$

5. Find A^{100} and A^{285} if $A=\left(\begin{array}{rr}7 & 12 \\ -4 & -7\end{array}\right)$.(20 pts.)
6. For what values of $a \in \mathbb{R}$, does the system,

$$
\begin{aligned}
& a x-3 y+(a-2) z=3 \\
& 2 a x-5 y+z=7 \\
& a u-y-3 z=5
\end{aligned}
$$

has
a) a unique solution in \mathbb{R}^{3},
b) a solution in \mathbb{Z}^{3}.
c) no solution at all,
d) infinitely many solutions?

For cases $a, \mathrm{~b}$ and c find all possible solutions. (20 pts .)
7. a) Find all 2×2 matrices A such that $A^{2}=A$. (10 pts. $)$
b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map such that $f^{2}=f$. Show that $\operatorname{Im} f \cap \operatorname{Ker} f=0$.

Conclude that if $n=2$ and $f \neq \mathrm{Id}$ (the identity map) and $f \neq 0$ (the zero map), then $\operatorname{dim} \operatorname{Ker} f=1$ and $\operatorname{dim} \operatorname{Im} f=1$. (10 pts.)
c) Show that if A is a 2×2 matrix such that $A^{2}=A$, then there is an invertible P such that $P A P^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. (10 pts.)
d) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map such that $f^{2}=f$. Show that $f(x)-x \in \operatorname{Ker} f$ for all f $\in \mathbb{R}^{n}$. Conclude that $\mathbb{R}^{n}=\operatorname{Ker} f+\operatorname{Im} f$. Deduce that if A is an $n \times n$ matrix such that $A^{2}=$
A, then there is an invertible P such that $P A P^{-1}=\left(\begin{array}{cc}\operatorname{Id}_{m} & 0_{m, n-m} \\ 0_{n-m, m} & 0_{m, m}\end{array}\right)$ for some $m=0,1$,
\ldots, n. (Here 0 means the zero matrix of the appropriate size). (22 pts.)

