Math 217 Linear Algebra Final Exam Fabruary 4, 2006

- 1. Prove or disprove: For the nonzero matrices *A*, *B* and *C*, if *AB* = *AC* then *B* = *C*. (3 pts.)
- 2. Prove or disprove: For matrices A and B, if B is the inverse of A^2 then AB is the inverse of A. (3 pts.)

3. Find the inverse of the matrix
$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
. (6 pts.)
4. Show that the inverse of the $n \times n$ matrix
$$\begin{pmatrix} n & -1 & \cdots & -1 \\ -1 & n & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n \end{pmatrix}$$
 is of the form

$$\frac{1}{n+1} \begin{pmatrix} c & 1 & \cdots & 1 \\ 1 & c & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & c \end{pmatrix}$$
for some *c*. (6 pts.)

5. Find
$$A^{100}$$
 and A^{285} if $A = \begin{pmatrix} 7 & 12 \\ -4 & -7 \end{pmatrix}$. (20 pts.)

6. For what values of $a \in \mathbb{R}$, does the system,

$$ax - 3y + (a - 2)z = 3$$

 $2ax - 5y + z = 7$
 $au - y - 3z = 5$

has

- a) a unique solution in \mathbb{R}^3 ,
- b) a solution in \mathbb{Z}^3 .
- c) no solution at all,
- d) infinitely many solutions?

For cases *a*, b and *c* find all possible solutions. (20 pts.)

7. a) Find all 2×2 matrices A such that $A^2 = A$. (10 pts.)

b) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map such that $f^2 = f$. Show that Im $f \cap$ Ker f = 0. Conclude that if n = 2 and $f \neq Id$ (the identity map) and $f \neq 0$ (the zero map), then dim Ker f = 1 and dim Im f = 1. (10 pts.)

c) Show that if A is a 2 × 2 matrix such that $A^2 = A$, then there is an invertible P such that $PAP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. (10 pts.)

d) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map such that $f^2 = f$. Show that $f(x) - x \in \text{Ker } f$ for all $f \in \mathbb{R}^n$. Conclude that $\mathbb{R}^n = \text{Ker } f + \text{Im } f$. Deduce that if A is an $n \times n$ matrix such that $A^2 =$

A, then there is an invertible P such that $PAP^{-1} = \begin{pmatrix} Id_m & 0_{m,n-m} \\ 0_{n-m,m} & 0_{m,m} \end{pmatrix}$ for some m = 0, 1, ..., n. (Here 0 means the zero matrix of the appropriate size). (22 pts.)