Math 231 (Linear Algebra)

Final
January 17, 2004
Ali Nesin
I. Let K be a field, A a set and Π a set of subsets of A. Let V be the set of all functions from A into K. Clearly V is a vector space over K with the usual operations (addition and scalar multiplication). Let $V(\Pi)$ be the set of elements of V that vanish on some subset that belongs to Π. Thus,

$$
V(\Pi)=\{f: A \rightarrow K: \text { there is } X \in \Pi \text { such that } f=0 \text { on } X\} .
$$

Find the necessary and sufficent condition on Π for $V(\Pi)$ to be a subspace of V. (10 pts.)

Solution. $V(\Pi)$ is always closed under scalar multiplication. All we need is to find necessary and sufficient condition(s) on Π for $V(\Pi)$ to be closed under addition.

Assume $V(\Pi)$ is closed under addition. Let X and Y be two subsets of A. Let f be the characteristic function of X^{c}. Thus $f(x)=0$ if $x \in X$ and $f(x)=1$ if $x \notin X$. Then $f \in V(\Pi)$. Let g be such that $g(x)=0$ if $x \in X \cup\left(X^{c} \cap Y^{c}\right)$ and $g(x)=1$ otherwise. Then $f+g$ is the characteristic function of $X \cap Y$. On the other hand, since $f+g \in V(\Pi)$, there is a $Z \in \Pi$ such that $f+g=0$ on Z. We must have $Z \subseteq X \cap Y$. Thus for all $X, Y \in \Pi$ there is a $Z \in \Pi$ such that $Z \subseteq X \cap Y$.

It is clear that this condition is also sufficient for $V(\Pi)$ to be closed under addition.
II. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $\varphi(x, y)=(x-y, 2 x, y)$. Let

$$
e_{1}=(1,2), e_{2}=(3,1)
$$

$$
f_{1}=(1,1,1), f_{2}=(1,0,-1), f_{3}=(0,1,1)
$$

Find the matrix of φ with respect to these bases. (10 pts.)
Solution. Note that

$$
\begin{aligned}
& (1,0,0)=f_{1}-f_{3} \\
& (0,1,0)=-f_{1}+f_{2}+2 f_{3} \\
& (0,0,1)=f_{1}-f_{2}-f_{3}
\end{aligned}
$$

Using these or computing directly, we get

$$
\begin{aligned}
& \varphi\left(e_{1}\right)=(1-2,2,2)=(-1,2,2)=3 f_{3}-f_{1} \\
& \varphi\left(e_{2}\right)=(3-1,6,1)=(2,6,1)=-3 f_{1}+5 f_{2}+9 f_{3}
\end{aligned}
$$

So that the matrix is:

$$
\left(\begin{array}{rr}
-1 & -3 \\
0 & 5 \\
3 & 9
\end{array}\right)
$$

III. Let V be a vector space over a field F. Let $\varphi: V \rightarrow V$ be a linear map. A nonzero vector $v \in V$ is called an eigenvector of φ if $\varphi(v)=\alpha v$ for some $\alpha \in F$. Such a scalar α is called an eigenvalue of φ. For $\alpha \in F$ we let $V_{\alpha}=\{v \in V: \varphi(v)=\alpha v\}$.
III.1. Show that V_{α} is a subspace of V. (2 pts .)

Proof. This is easy.
III.2. Find all the eigenvalues and the corresponding eigenvectors of the linear map $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$. (10 pts. $)$

Solution. We have to find solutions of $\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)\binom{x}{y}=\alpha\binom{x}{y}$, i.e. of the system

$$
\begin{aligned}
2 x+2 y & =\alpha x \\
x+3 y & =\alpha y
\end{aligned}
$$

equivalently of the system

$$
\begin{aligned}
& (2-\alpha) x+2 y=0 \\
& x+(3-\alpha) y=0
\end{aligned}
$$

For this system to have a nonzero solution (x, y), we need

$$
\operatorname{det}\left(\begin{array}{cc}
2-\alpha & 2 \\
1 & 3-\alpha
\end{array}\right)=0
$$

(because otherwise the linear map defined by the matrix is invertible and has trivial kernel) implying $\alpha^{2}-5 \alpha+4=0$, i.e. $\alpha=1$ or 4 .

If $\alpha=1$, the system is equivalent to $x+2 y=0$.
If $\alpha=4$, the system is equivalent to $x-y=0$.
Thus

$$
\begin{aligned}
& V_{1}=\{(x, y): x+2 y=0\}=\mathbb{R}(-2,1) \\
& V_{4}=\{(x, y): x-y=0\}=\mathbb{R}(1,1) \\
& V_{\alpha}=0 \text { if } \alpha \neq 1,4 .
\end{aligned}
$$

In short 1 and 4 are the two eigenvalues and $(-2,1)$ and $(1,1)$, or their nonzero multiples, are the corresponding eigenvectors.
III.3. Let V be the vector space of real sequences and let φ be the linear map from V into V defined by $\varphi\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$. Find the eigenvalues and eigenvectors of φ. (4 pts.)

Solution. We need to solve $\alpha\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\varphi\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, i.e.

$$
\begin{aligned}
& x_{1}=\alpha x_{0} \\
& x_{2}=\alpha x_{1} \\
& x_{3}=\alpha x_{2} \\
& x_{4}=\alpha x_{3}
\end{aligned}
$$

Any α is an eigenvalue. The vector $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \ldots\right)$ is an eigenvector for α.
III.4. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation (around (0,0) of course, otherwise φ is not linear). Can φ have an eigenvalue? (10 pts .)

Answer. No, unless it is a rotation of π or 2π radians, in which cases the eigenvalues are -1 and 1 respectively. Why? Well, how can you rotate a vector and still get a scalar multiple of that vector?
III.5. Assume V is finite dimensional. Show that α is an eigenvalue for φ if and only if α is a root of the polynomial $\operatorname{det}\left(\varphi-X \mathrm{Id}_{V}\right)=0$. (Here I assume that you know that a linear map from a finite dimensional vector space into itself is invertible iff its determinant is nonzero). Check this result on Question 2. Conclude that a linear map \mathbb{R}^{3} into itself has always an eigenvector. (10 pts .)

Proof: Let α be an eigenvalue for φ. Then there is a nonzero vector such that $\varphi(v)=$ αv. Hence $(\varphi-\alpha \mathrm{Id})(v)=0$. It follows that $v \in \operatorname{Ker}(\varphi-\alpha \mathrm{Id})$ and $\varphi-\alpha \mathrm{Id}$ is noninvertible. Hence $\operatorname{det}(\varphi-\alpha \mathrm{Id})=0$, i.e. α is a root of $\operatorname{det}(\varphi-X I d)=0$.

Conversely, assume that α is a root of $\operatorname{det}(\varphi-X I d)=0$. Hence $\operatorname{det}(\varphi-\alpha I d)=0$ and the linear map $\varphi-\alpha$ Id is noninvertible. Let v be a nonzero vector in $\operatorname{ker}(\varphi-\alpha \mathrm{Id})$. Hence $(\varphi-\alpha \mathrm{Id})(v)=0$ and $\varphi(v)=\alpha v$. Since $v \neq 0$, this shows that α is an eigenvalue of φ.

This is exactly how Question 2 was solved.
If $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, then the polynomial $\operatorname{det}(\varphi-X I d)$ is of degree 3 , and must have a solution.
III.6. Show that if $\left(\alpha_{i}\right)_{i}$ are all distinct scalars and $0 \neq v_{i} \in V_{\alpha_{i}}$, then the set $\left(v_{i}\right)_{i}$ is a linearly independent set. In other words, show that the subspace spanned by the subspaces V_{α} is a direct sum of them (10 pts.)

Proof: Assume $\beta_{i_{1}}, \beta_{i_{2}}, \ldots, \beta_{i_{n}}$ are nonzero scalars and that

$$
\beta_{i_{1}} v_{i_{1}}+\beta_{i_{2}} v_{i_{2}}+\ldots+\beta_{i_{n}} v_{i_{n}}=0
$$

Applying φ to this equality we get

$$
\beta_{i_{1}} \alpha_{i_{1}} v_{i_{1}}+\beta_{i_{2}} \alpha_{i_{2}} v_{i_{2}}+\ldots+\beta_{i_{n}} \alpha_{i_{n}} v_{i_{n}}=0
$$

Subtract the second equation from the first equation multiplied by $\alpha_{i_{1}}$ to get

$$
\beta_{i_{2}}\left(\alpha_{i_{1}}-\alpha_{i_{2}}\right) v_{i_{2}}+\ldots+\beta_{i_{n}}\left(\alpha_{i_{1}}-\alpha_{i_{n}}\right) v_{i_{n}}=0
$$

Now we have $\leq n-1$ terms. By induction we can conclude that

$$
\beta_{i_{2}}\left(\alpha_{i_{1}}-\alpha_{i_{2}}\right)=\ldots=\beta_{i_{n}}\left(\alpha_{i_{1}}-\alpha_{i_{n}}\right)=0 .
$$

Since $\beta_{i_{1}}, \beta_{i_{2}}, \ldots, \beta_{i_{n}}$ are nonzero scalars, we get,

$$
\alpha_{i_{1}}-\alpha_{i_{2}}=\ldots=\alpha_{i_{1}}-\alpha_{i_{n}}=0,
$$

i.e.

$$
\alpha_{i_{1}}=\alpha_{i_{2}}=\ldots=\alpha_{i_{n}} .
$$

Hence $n=1$ and the result is trivial in this case.
III.7. Assume that V is finite dimensional. Show that $V=\oplus_{i} V_{\alpha_{i}}$ if and only if there is a basis of V in which the matrix of φ is diagonal. (10 pts.)

Proof: Trivial.
Suppose there is a basis of V in which the matrix of φ is diagonal. Let $\left(v_{i}\right)_{i}$ be this basis. Then $\varphi\left(v_{i}\right)=\alpha_{i} v_{i}$ for some scalar α_{i}. (The α_{i} is the scalar that appears on the i-th column of the diagonal matrix). It is now easy to check that $V=\oplus_{i} V_{\alpha_{i}}$.

Conversely, suppose $V=\oplus_{i} V_{\alpha_{i}}$. Choose a basis of each $V_{\alpha_{i}}$ and collect them together to get a basis of V. The matrix of φ with respect to this basis must be diagonal.
III.8. Find a basis of \mathbb{R}^{2} in which the matrix of the linear map φ in Question III. 2 is diagonal. (10 pts.).

Solution. Take $v_{1}=(-2,1)$ and $v_{4}=(1,1)$. Then the matrix of φ with respect to this basis is

$$
\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)
$$

