Math 231 (Linear Algebra)

Final

January 17, 2004 Ali Nesin

I. Let K be a field, A a set and Π a set of subsets of A. Let V be the set of all functions from A into K. Clearly V is a vector space over K with the usual operations (addition and scalar multiplication). Let V(Π) be the set of elements of V that vanish on some subset that belongs to Π . Thus,

 $V(\Pi) = \{ f : A \to K : there is X \in \Pi \text{ such that } f = 0 \text{ on } X \}.$

Find the necessary and sufficient condition on Π for V(Π) to be a subspace of V. (10 pts.)

Solution. $V(\prod)$ is always closed under scalar multiplication. All we need is to find necessary and sufficient condition(s) on \prod for $V(\prod)$ to be closed under addition.

Assume $V(\prod)$ is closed under addition. Let *X* and *Y* be two subsets of *A*. Let *f* be the characteristic function of X^c . Thus f(x) = 0 if $x \in X$ and f(x) = 1 if $x \notin X$. Then $f \in V(\prod)$. Let *g* be such that g(x) = 0 if $x \in X \cup (X^c \cap Y^c)$ and g(x) = 1 otherwise. Then f + g is the characteristic function of $X \cap Y$. On the other hand, since $f + g \in V(\prod)$, there is a $Z \in \prod$ such that f + g = 0 on *Z*. We must have $Z \subseteq X \cap Y$. Thus for all $X, Y \in \prod$ there is a $Z \in \prod$ such that $Z \subseteq X \cap Y$.

It is clear that this condition is also sufficient for $V(\prod)$ to be closed under addition.

II. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $\varphi(x, y) = (x - y, 2x, y)$. Let $e_1 = (1, 2), e_2 = (3, 1).$ $f_1 = (1, 1, 1), f_2 = (1, 0, -1), f_3 = (0, 1, 1).$ Find the matrix of φ with respect to these bases. (10 pts.) Solution. Note that $(1, 0, 0) = f_1 - f_3$ $(0, 1, 0) = -f_1 + f_2 + 2f_3$ $(0, 0, 1) = f_1 - f_2 - f_3$ Using these or computing directly, we get $\varphi(e_1) = (1 - 2, 2, 2) = (-1, 2, 2) = 3f_3 - f_1$ $\varphi(e_2) = (3 - 1, 6, 1) = (2, 6, 1) = -3f_1 + 5f_2 + 9f_3$ So that the matrix is:

$$\begin{bmatrix}
 -1 & -3 \\
 0 & 5 \\
 3 & 9
 \end{bmatrix}$$

III. Let V be a vector space over a field F. Let $\varphi : V \to V$ be a linear map. A nonzero vector $v \in V$ is called an **eigenvector** of φ if $\varphi(v) = \alpha v$ for some $\alpha \in F$. Such a scalar α is called an **eigenvalue** of φ . For $\alpha \in F$ we let $V_{\alpha} = \{v \in V : \varphi(v) = \alpha v\}$.

III.1. Show that V_{α} is a subspace of V. (2 pts.)

Proof. This is easy.

III.2. Find all the eigenvalues and the corresponding eigenvectors of the linear map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. (10 pts.)

Solution. We have to find solutions of $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \alpha \begin{pmatrix} x \\ y \end{pmatrix}$, i.e. of the system $2x + 2y = \alpha x$

$$2x + 2y = \alpha x$$
$$x + 3y = \alpha y$$

equivalently of the system

$$(2-\alpha)x + 2y = 0$$
$$x + (3-\alpha)y = 0$$

For this system to have a nonzero solution (x, y), we need

$$\det\begin{pmatrix} 2-\alpha & 2\\ 1 & 3-\alpha \end{pmatrix} = 0,$$

(because otherwise the linear map defined by the matrix is invertible and has trivial kernel) implying $\alpha^2 - 5\alpha + 4 = 0$, i.e. $\alpha = 1$ or 4.

If $\alpha = 1$, the system is equivalent to x + 2y = 0. If $\alpha = 4$, the system is equivalent to x - y = 0. Thus

$$V_1 = \{(x, y) : x + 2y = 0\} = \mathbb{R}(-2, 1)$$

$$V_4 = \{(x, y) : x - y = 0\} = \mathbb{R}(1, 1)$$

$$V_\alpha = 0 \text{ if } \alpha \neq 1, 4.$$

In short 1 and 4 are the two eigenvalues and (-2, 1) and (1, 1), or their nonzero multiples, are the corresponding eigenvectors.

III.3. Let V be the vector space of real sequences and let φ be the linear map from V into V defined by $\varphi(x_0, x_1, x_2, ...) = (x_1, x_2, x_3,...)$. Find the eigenvalues and eigenvectors of φ . (4 pts.)

Solution. We need to solve $\alpha(x_0, x_1, x_2, ...) = \varphi(x_0, x_1, x_2, ...) = (x_1, x_2, x_3, ...)$, i.e.

$$x_1 = \alpha x_0$$

$$x_2 = \alpha x_1$$

$$x_3 = \alpha x_2$$

$$x_4 = \alpha x_3$$

.....

Any α is an eigenvalue. The vector $(1, \alpha, \alpha^2, \alpha^3, ...)$ is an eigenvector for α .

III.4. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation (around (0,0) of course, otherwise φ is not linear). Can φ have an eigenvalue? (10 pts.)

Answer. No, unless it is a rotation of π or 2π radians, in which cases the eigenvalues are -1 and 1 respectively. Why? Well, how can you rotate a vector and still get a scalar multiple of that vector?

III.5. Assume V is finite dimensional. Show that α is an eigenvalue for φ if and only if α is a root of the polynomial det $(\varphi - XId_V) = 0$. (Here I assume that you know that a linear map from a finite dimensional vector space into itself is invertible iff its determinant is nonzero). Check this result on Question 2. Conclude that a linear map \mathbb{R}^3 into itself has always an eigenvector. (10 pts.)

Proof: Let α be an eigenvalue for φ . Then there is a nonzero vector such that $\varphi(v) = \alpha v$. Hence $(\varphi - \alpha Id)(v) = 0$. It follows that $v \in \text{Ker}(\varphi - \alpha Id)$ and $\varphi - \alpha Id$ is noninvertible. Hence $\det(\varphi - \alpha Id) = 0$, i.e. α is a root of $\det(\varphi - XId) = 0$.

Conversely, assume that α is a root of det($\varphi - XId$) = 0. Hence det($\varphi - \alpha Id$) = 0 and the linear map $\varphi - \alpha Id$ is noninvertible. Let v be a nonzero vector in ker($\varphi - \alpha Id$). Hence $(\varphi - \alpha Id)(v) = 0$ and $\varphi(v) = \alpha v$. Since $v \neq 0$, this shows that α is an eigenvalue of φ .

This is exactly how Question 2 was solved.

If $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, then the polynomial det $(\varphi - XId)$ is of degree 3, and must have a solution.

III.6. Show that if $(\alpha_i)_i$ are all distinct scalars and $0 \neq v_i \in V_{\alpha_i}$, then the set $(v_i)_i$ is a linearly independent set. In other words, show that the subspace spanned by the subspaces V_{α} is a direct sum of them (10 pts.)

Proof: Assume $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_n}$ are nonzero scalars and that

$$\beta_{i_1} v_{i_1} + \beta_{i_2} v_{i_2} + \dots + \beta_{i_n} v_{i_n} = 0.$$

Applying φ to this equality we get

$$\beta_{i_1} \alpha_{i_1} v_{i_1} + \beta_{i_2} \alpha_{i_2} v_{i_2} + \dots + \beta_{i_n} \alpha_{i_n} v_{i_n} = 0.$$

Subtract the second equation from the first equation multiplied by α_{i_1} to get

$$\beta_{i_2} (\alpha_{i_1} - \alpha_{i_2}) v_{i_2} + \dots + \beta_{i_n} (\alpha_{i_1} - \alpha_{i_n}) v_{i_n} = 0.$$

Now we have $\leq n - 1$ terms. By induction we can conclude that

$$\beta_{i_2} (\alpha_{i_1} - \alpha_{i_2}) = \dots = \beta_{i_n} (\alpha_{i_1} - \alpha_{i_n}) = 0.$$

Since $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_n}$ are nonzero scalars, we get,

$$\alpha_{i_1} - \alpha_{i_2} = \dots = \alpha_{i_1} - \alpha_{i_n} = 0$$

i.e.

$$\alpha_{i_1} = \alpha_{i_2} = \ldots = \alpha_{i_n}.$$

Hence n = 1 and the result is trivial in this case.

III.7. Assume that V is finite dimensional. Show that $V = \bigoplus_i V_{\alpha_i}$ if and only if there is a basis of V in which the matrix of φ is diagonal. (10 pts.)

Proof: Trivial.

Suppose there is a basis of *V* in which the matrix of φ is diagonal. Let $(v_i)_i$ be this basis. Then $\varphi(v_i) = \alpha_i v_i$ for some scalar α_i . (The α_i is the scalar that appears on the *i*-th column of the diagonal matrix). It is now easy to check that $V = \bigoplus_i V_{\alpha_i}$.

Conversely, suppose $V = \bigoplus_i V_{\alpha_i}$. Choose a basis of each V_{α_i} and collect them together to get a basis of V. The matrix of φ with respect to this basis must be diagonal.

III.8. Find a basis of \mathbb{R}^2 in which the matrix of the linear map φ in Question III.2 is diagonal. (10 pts.).

Solution. Take $v_1 = (-2, 1)$ and $v_4 = (1, 1)$. Then the matrix of φ with respect to this basis is

$$\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$