Linear Algebra

Math 231, Midterm 1 November 18, 1999 Ali Nesin

1. Let $V = \{(x, y, z, t, u) \in \mathbb{R}^5 : x + y + z - t + u\}$. Let $W = \{(x, y, z, t, u) \in V : 2x - 2y + z - t + u = 0 \text{ and } 2x - 3t = 0\}.$

We know that V is a vector space over \mathbb{R} and that W is a subspace of V. Find bases of V, W and V/W.

2. Let *V* be a vector space over a field *K*. Let $f \in \text{End}_{K}(V)$ be such that $f \circ f = f$. **2a.** Show that $v - f(v) \in \text{Ker}(f)$ for all $v \in V$. **2b.** Show that $\text{Ker}(f) \cap \text{Im}(f) = \{0\}$. **2c.** Show that $V = \text{Ker}(f) \times \text{Im}(f)$

3. Show that, as vector spaces over \mathbb{Q} , $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$. Conclude that as abelian groups $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

4. For this question, you may assume basic facts of analysis.

Let $V = \{f : [0, 2\pi] \to \mathbb{R} : f \text{ is continuous}\}$. We know (from calculus) that *V* is a vector space over \mathbb{R} . For $f, g \in V$, let $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$. (If *f* and *g* are in *V*, one can show in analysis that $\langle f, g \rangle$ exists).

4a. Find a subspace W of V such that $\dim(V/W) = 1$.

4b. Show that \langle , \rangle is a **bilinear symmetric map** from $V \times V$ into \mathbb{R} , i.e. that for all $f, f_1, f_2, g, g_1, g_2 \in V$ and $r \in \mathbb{R}$, (i) $\langle f_1 + f_2, g \rangle = \langle f_1, g \rangle + \langle f_2, g \rangle$

(ii) $\langle f, g_1 + g_2 \rangle = \langle f, g_1 \rangle + \langle f, g_2 \rangle$

(iii) $\langle rf, g \rangle = r \langle f, g \rangle$

(iv) $\langle f, g \rangle = \langle g, f \rangle$

4c. Show that for all $f \in V$, $\langle f, f \rangle \ge 0$. Is it true that if $\langle f, f \rangle = 0$ then f = 0.

4d. Show that the set $\{\sin^n x : n \in \mathbb{N}\}$ is a linearly independent subset of *V*.

5. Let $k \le K \le L$ be field extensions. Show that $\dim_k(L)$ is finite if and only if $\dim_k(K)$ and $\dim_K(L)$ are finite. Show that in that case we have $\dim_k(L) = \dim_k(K)\dim_K(L)$. (10 pts.)

6. Let *V* be a vector space over a field *F*. Let $(v_i)_{i \in I}$ be a basis of *V*. For $j \in I$, define a function v_i^* from *V* into *F* as follows:

For all
$$v \in V$$
, if $v = \sum_{i \in I} \alpha_i v_i$, then $v_j^*(v) = \alpha_j$.

Note that the set of linear maps from V into F form a vector space V^* .

6a. Show that $v_j^* \in V^*$ for all $j \in J$.

6b. Show that the linear maps v_i^* are linearly independent. (10 pts.)

6c. Assume *V* is finite dimensional. Let $f \in V^*$ and set $f(v_i) = \beta_i \in F$. Show that

$$f = \sum_{i \in I} \beta_i v_i *$$

Conclude that the set $(v_i^*)_{i \in I}$ form a basis of V^* .

6d. Assume *V* is infinite dimensional. Define $f: V \rightarrow F$ as follows:

For
$$v \in V$$
, if $v = \sum_{i \in I} \alpha_i v_i$, then $f(v) = \sum_{i \in I} \alpha_i$

Show that $f \in V^*$ but that f is not in the subspace of V^* generated by $(v_i^*)_{i \in I}$.