Math 131 Final
January 6th, 2005
Ali Nesin

1. Let plq mean $p \wedge \neg q$. Show that the formula $\neg p$ is not tautologically equivalent to a proposition whose only connective is I . (10 pts.)

Proof: We first show that no proposition with I as the only connective can assume the truth value always 1 . Assume not. Let α be such a proposition of smallest length. Write $\alpha=\beta \mid \gamma$. Then β must always assume the truth value 1 , contradicting the fact that α was the smallest such proposition.

We can now show that no proposition with I as the only connective can be tautologically equivalent to $\neg p$.

A proposition $\alpha=\alpha(p, \ldots)$ with \mid as the only connective is of the form

$$
\beta(p, \ldots) \mid \gamma(p, \ldots)
$$

for some shorter propositions β and γ. Here "..." denotes the fact that we may have other atomic propositions in the expressions. Choose α to be tautologically equivalent to $\neg p$ and of minimal length with this property. Since α is tautologically equivalent to $\neg p$ we must have,
a) $\beta(0, \ldots)=1$ and $\gamma(0, \ldots)=0$ (so that $\alpha(0, \ldots)=\neg 0=1)$ and
b) Either $\beta(1, \ldots)=0$ or $\gamma(1, \ldots)=1$ (so that $\alpha(1, \ldots)=\neg 1=0$).

Let us consider the two subcases of case b separately.
If $\beta(1, \ldots)=0$, then, because of condition a, β is itself equivalent to $\neg p$, contradicting the fact that α is of minimal length with this property. Thus $\beta(1, \ldots)=1$. Thus β always assumes the truth value 1 , contradicting our first fact.
2. How many words can you write using all the letters of ABRAKADABRA? (A must be used 5 times, B twice etc.) (10 pts .)

Answer: Let us first replace the five A's by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$ in the order of their apparence and the two B 's and R 's by B_{1} and B_{2} and R_{1} and R_{2} in that order. Now we have 11 different letters. We can order them in 11! different ways. Identifying the A's, B's and R's reduces this number to $11!/(5!2!2!)=11 \times 10 \times 9 \times 8 \times 7 \times 6 / 4=11 \times 10 \times 9 \times 2 \times 7 \times 6=110 \times 18 \times 42=$ $1980 \times 42=83160$.
3. Consider the polynomial $\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{k}$ in n variables X_{1}, \ldots, X_{n}. When multiplied out, this polynomial is equal to a polynomial of the form

$$
\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} a\left(i_{1}, \ldots, i_{n}\right) X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}
$$

for some $a\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}$. Here, k runs over all natural numbers and $i_{1}, i_{2}, \ldots, i_{n}$ run over all natural numbers whose sum is k. Find $a\left(i_{1}, \ldots, i_{n}\right)$. Applying the above formula to various values of $X_{1}, X_{2}, \ldots, X_{n}$ deduce some combinatorial formulas. (20 pts .)

Answer: Write the product $\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{k}$ in the form

$$
\left(X_{1}+X_{2}+\ldots+X_{n}\right)\left(X_{1}+X_{2}+\ldots+X_{n}\right) \ldots\left(X_{1}+X_{2}+\ldots+X_{n}\right) .
$$

Here, there are k factors. To execute the multiplication, from each factor we choose one of the $X_{i}{ }^{\prime}$ s and multiply these choice to get some monomial of the form $X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}$. Given i_{1}, \ldots, i_{n} whose sum is k, we have to find out in how many ways we can choose the X_{i} 's from each factor so as to obtain $X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}$. We have k factors to choose i_{1} many X_{1} 's. Thus $X_{1}{ }_{1}{ }_{1}$ can be chosen in $\binom{k}{i_{1}}$ many ways. Now for X_{2}, there are only $k-i_{1}$ factors left to choose from.

From these $k-i_{1}$ factors we have to choose i_{2} many X_{2} 's. Hence the number of choice for $X_{2}{ }_{2}{ }_{2}$ is $\binom{k-i_{1}}{i_{2}}$. In a similar way, we find that the number of choices for X_{3} is $\binom{k-i_{1}-i_{2}}{i_{3}}$. Hence the monomial $X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}$ can be chosen in

$$
\binom{k}{i_{1}}\binom{k-i_{1}}{i_{2}}\binom{k-i_{1}-i_{2}}{i_{3}} \ldots\binom{k-i_{1}-i_{2}-\ldots-i_{n-1}}{i_{n}}
$$

many ways. This can also be written as,

$$
\begin{aligned}
& \binom{k}{i_{1}} \\
& \left.\quad=\frac{k-i_{1}}{i_{2}}\right)\binom{k-i_{1}-i_{2}}{i_{3}} \ldots\binom{k-i_{1}-i_{2}-\ldots-i_{n-1}}{i_{n}} \\
& \quad=\frac{\left(k-i_{1}\right)!}{i_{1}!\left(k-i_{1}\right)!} \frac{\left(k-i_{1}-i_{2}\right)!}{i_{2}!\left(k-i_{1}-i_{2}\right)!i_{3}!\left(k-i_{1}-i_{2}-i_{3}\right)!} \cdots \frac{\left(k-i_{1}-i_{2}-\ldots-i_{n-1}\right)!}{i_{n}!\left(k-i_{1}-i_{2}-i_{3}-\ldots-i_{n}\right)!} \\
& \quad=\frac{k!}{i_{1}!i_{2}!\ldots i_{n}!} .
\end{aligned}
$$

Thus

$$
a\left(i_{1}, \ldots, i_{n}\right)=\frac{\left(i_{1}+\ldots+i_{n}\right)!}{i_{1}!i_{2}!\ldots i_{n}!}
$$

Application. Thus,

$$
\begin{aligned}
\left(X_{1}+\ldots+X_{n}\right)^{k} & =\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} a\left(i_{1}, \ldots, i_{n}\right) X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}} \\
& =\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} \frac{\left(i_{1}+\ldots+i_{n}\right)!}{i_{1}!i_{2}!\ldots i_{n}!} X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}
\end{aligned}
$$

Let us take $X_{i}=1$ for all n to get,

$$
\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} \frac{\left(i_{1}+\ldots+i_{n}\right)!}{i_{1}!i_{2}!\ldots i_{n}!}=n^{k}
$$

a nice formula to my taste.
4. Show that in any ring a prime element is irreducible. (10 pts.)

Proof: Let R be any (commutative) ring (with 1). Recall that an element $p \in R \backslash R^{*}$ which is not a zero divisor is called prime if whenever p divides $x y$ then p divides either x or y. An element $p \in R \backslash R^{*}$ which is not a zero divisor is called irreducible if whenever $p=x y$ then either x or y is in R^{*}. Assume p is prime in R. Assume $p=x y$. Then p divides $x y$. Since p is prime, this implies that p divides either x or y. The situation being symmetrical with respect to x and y, we may assume that p divides x. Let $z \in R$ be such that $x=p z$. Now $p=x y=p z y$ and $p(1-z y)=0$. Since p is not a zerodivisor, this implies that $1-z y=0$, i.e. $z y=1$ and so $=1$ and so $y \in R^{*}$.
5. Let f_{n} be the number of words in letters a, b and c 's of length n without the subword abc.

5a. Find a recursive formula for f_{n}.
5b. Compute f_{6} and f_{7}.
(20 pts.)
Answer: Clearly $f_{1}=1$ (the empty word), $f_{2}=9, f_{3}=27-1=26$ (all but $a b c$), $f_{4}=3^{4}-6$ (all but $a b c a, a b c b, a b c c, a a b c, b a b c, c a b c$). Now let $n \geq 3$. Given a word w without $a b c$ of length $n-1$, we can freely add a or b to the end of w to obtain the words $w a$ and $w b$ without
$a b c$. We can also add c to get the words $w a, w b$ and $w c$ without $a b c$ in case the word w of length $n-1$ does not end with $a b$. If g_{n} denotes the number of words without $a b c$ that end with $a b$ then, the above discussion shows that

$$
f_{n}=3\left(f_{n-1}-g_{n-1}\right)+2 g_{n-1}
$$

So let us compute g_{n}. Clearly to any word w without $a b c$ of length $n-2$, we can add $a b$ to the end to get $w a b$, a word without $a b c$ and that ends with $a b$. Thus,

$$
g_{n}=f_{n-2} .
$$

Therefore

$$
f_{n}=3\left(f_{n-1}-g_{n-1}\right)+2 g_{n-1}=3\left(f_{n-1}-f_{n-3}\right)+2 f_{n-3}=3 f_{n-1}-f_{n-3} .
$$

By using this formula we can compute f_{n} recursively:
$f_{1}=1$
$f_{2}=9$,
$f_{3}=3 f_{2}-f_{0}=27-1=26$
$f_{4}=3 f_{3}-f_{1}=3 \times 26-1=75$
$f_{5}=3 f_{4}-f_{2}=3 \times 75-9=216$
$f_{6}=3 f_{5}-f_{3}=3 \times 216-26=622$
$f_{7}=3 f_{6}-f_{4}=3 \times 622-75=1866-75=1791$.
6. How many irreducible polynomials are there in $\mathbb{Z}[X]$ of the form $X^{2}+a X+b$ where a, b $\in\{-2,-1,0,1,2\} ?$ (15 pts.)

Answer: A reducible polynomial of the form $X^{2}+a X+b$ must be a product of two monic polynomials of degree 1 , thus they must have at least one root in \mathbb{Z}. Since the roots are given by

$$
\frac{-a \pm \sqrt{a^{2}-4 b}}{2}
$$

the coefficients a and b must satisfy the following two conditions:
a) the discriminant $a^{2}-4 b$ must be a perfect square in \mathbb{Z}, and
b) Since an eventual root must be in \mathbb{Z} and not in $\mathbb{Q},-a+\sqrt{ }\left(a^{2}-4 b\right)$ must be divisible by 2, i.e. $a^{2}-4 b$ and a must be of the same parity, but this is always the case.
We compute $a^{2}-4 b$ case by case to see which pairs (a, b) satisfy the condition a (condition b is automatically satisfied):

$a^{2}-4 b$	$a=-2$	$a=-1$	$a=0$	$a=1$	$a=2$
$b=-2$	$\mathbf{1 2}$	9	$\mathbf{8}$	9	$\mathbf{1 2}$
$b=-1$	$\mathbf{8}$	$\mathbf{5}$	4	$\mathbf{5}$	$\mathbf{8}$
$b=0$	4	1	0	1	4
$b=1$	0	$\mathbf{- 3}$	$\mathbf{- 4}$	$\mathbf{- 3}$	0
$b=2$	$\mathbf{- 4}$	$\mathbf{- 7}$	$\mathbf{- 8}$	$\mathbf{- 7}$	$\mathbf{- 4}$

We printed bold face the output $a^{2}-4 b$ in case it is not a square. There are 15 of them.
So there are 15 irreducible polynomials that satisfy the given conditions.
7. Find all irreducible polynomials of degree 3 of $(\mathbb{Z} / 2 \mathbb{Z})[X]$. (15 pts.)

Answer: Clearly a reducible polynomial of degree 3 must have a factor of degree 1, i.e. must be divisible either by X or by $X-1$, hence it must have a root (either 0 or 1). Let us list all polynomials of degree 3 and find out the ones that do not have a root, these are the irreducible ones:

Polynomial $f(X)$	$f(0)$	$f(1)$	Result	Decomposition
X^{3}	0	1	reducible	$X X X$
$X^{3}+1$	1	0	reducible	$(X+1)\left(X^{2}+X+1\right)$
$X^{3}+X$	0	0	reducible	$X(X+1)^{2}$
$X^{3}+X+1$	1	1	irreducible	
$X^{3}+X^{2}$	0	0	reducible	$X^{2}(X+1)$
$X^{3}+X^{2}+1$	1	1	irreducible	
$X^{3}+X^{2}+X$	0	1	reducible	$X\left(X^{2}+X+1\right)$
$X^{3}+X^{2}+X+1$	1	0	reducible	$(X+1)^{3}$

