1. Let plq mean $p \land \neg q$. Show that the formula $\neg p$ is not tautologically equivalent to a proposition whose only connective is \land. (10 pts.)

Proof: We first show that no proposition with \land as the only connective can assume the truth value always 1. Assume not. Let α be such a proposition of smallest length. Write $\alpha = \beta \gamma$. Then β must always assume the truth value 1, contradicting the fact that α was the smallest such proposition.

We can now show that no proposition with \land as the only connective can be tautologically equivalent to $\neg p$.

A proposition $\alpha = \alpha(p, \ldots)$ with \land as the only connective is of the form

$$\beta(p, \ldots) \gamma(p, \ldots)$$

for some shorter propositions β and γ. Here "..." denotes the fact that we may have other atomic propositions in the expressions. Choose α to be tautologically equivalent to $\neg p$ and of minimal length with this property. Since α is tautologically equivalent to $\neg p$ we must have,

a) $\beta(0, \ldots) = 1$ and $\gamma(0, \ldots) = 0$ (so that $\alpha(0, \ldots) = 0 \neq 1$) and

b) Either $\beta(1, \ldots) = 0$ or $\gamma(1, \ldots) = 1$ (so that $\alpha(1, \ldots) = 1 \neq 0$).

Let us consider the two subcases of case b separately.

If $\beta(1, \ldots) = 0$, then, because of condition a, β is itself equivalent to $\neg p$, contradicting the fact that α is of minimal length with this property. Thus $\beta(1, \ldots) = 1$. Thus β always assumes the truth value 1, contradicting our first fact.

2. How many words can you write using all the letters of ABRAKADABRA? (A must be used 5 times, B twice etc.) (10 pts.)

Answer: Let us first replace the five A’s by A1, A2, A3, A4, A5 in the order of their appearance and the two B’s and R’s by B1 and B2 and R1 and R2 in that order. Now we have 11 different letters. We can order them in 11! different ways. Identifying the A’s, B’s and R’s reduces this number to $11!(5!2!2!) = 11 \times 10 \times 9 \times 8 \times 7 \times 6 = 110 \times 18 \times 42 = 1980 \times 42 = 83160$.

3. Consider the polynomial $(X_1 + X_2 + \ldots + X_n)^k$ in n variables X_1, \ldots, X_n. When multiplied out, this polynomial is equal to a polynomial of the form

$$\sum_{i_1+i_2+\ldots+i_n=k} a(i_1,\ldots,i_n) X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}$$

for some $a(i_1, \ldots, i_n) \in \mathbb{N}$. Here, k runs over all natural numbers and i_1, i_2, \ldots, i_n run over all natural numbers whose sum is k. Find $a(i_1, \ldots, i_n)$. Applying the above formula to various values of X_1, X_2, \ldots, X_n deduce some combinatorial formulas. (20 pts.)

Answer: Write the product $(X_1 + X_2 + \ldots + X_n)^k$ in the form

$$(X_1 + X_2 + \ldots + X_n) (X_1 + X_2 + \ldots + X_n) \ldots (X_1 + X_2 + \ldots + X_n).$$

Here, there are k factors. To execute the multiplication, from each factor we choose one of the X_1's and multiply these choice to get some monomial of the form $X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}$. Given i_1, \ldots, i_n whose sum is k, we have to find out in how many ways we can choose the X_1's from each factor so as to obtain $X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}$. We have k factors to choose i_1 many X_1's. Thus $X_1^{i_1}$ can be chosen in $\binom{k}{i_1}$ many ways. Now for X_2, there are only $k - i_1$ factors left to choose from.
From these \(k - i_1 \) factors we have to choose \(i_2 \) many \(X_2 \)'s. Hence the number of choice for \(X_2 \)'s is \(\binom{k - i_1}{i_2} \). In a similar way, we find that the number of choices for \(X_3 \) is \(\binom{k - i_1 - i_2}{i_3} \). Hence the monomial \(X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n} \) can be chosen in

\[
\binom{k}{i_1} \binom{k - i_1}{i_2} \binom{k - i_1 - i_2}{i_3} \ldots \binom{k - i_1 - i_2 - \ldots - i_{n-1}}{i_n}
\]

many ways. This can also be written as,

\[
\frac{k!}{i_1!(k - i_1)!} \frac{(k - i_1)!}{i_2!(k - i_1 - i_2)!} \frac{(k - i_1 - i_2)!}{i_3!(k - i_1 - i_2 - i_3)!} \ldots \frac{(k - i_1 - i_2 - \ldots - i_{n-1})!}{i_n!(k - i_1 - i_2 - i_3 - \ldots - i_n)!}
\]

Thus

\[
a(i_1, \ldots, i_n) = \frac{(i_1 + \ldots + i_n)!}{i_1!i_2!\ldots i_n!}.
\]

Application. Thus,

\[
(X_1 + \ldots + X_n)^k = \sum_{i_1 + i_2 + \ldots + i_n = k} a(i_1, \ldots, i_n) X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}
\]

\[
= \sum_{i_1 + i_2 + \ldots + i_n = k} \frac{(i_1 + \ldots + i_n)!}{i_1!i_2!\ldots i_n!} X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}
\]

Let us take \(X_i = 1 \) for all \(n \) to get,

\[
\sum_{i_1 + i_2 + \ldots + i_n = k} \frac{(i_1 + \ldots + i_n)!}{i_1!i_2!\ldots i_n!} = n^k,
\]

a nice formula to my taste.

4. Show that in an ring a prime element is irreducible. (10 pts.)

Proof: Let \(R \) be any (commutative) ring (with 1). Recall that an element \(p \in R \setminus R^\ast \) which is not a zero divisor is called prime if whenever \(p \) divides \(xy \) then \(p \) divides either \(x \) or \(y \). An element \(p \in R \setminus R^\ast \) which is not a zero divisor is called irreducible if whenever \(p = xy \) then either \(x \) or \(y \) is in \(R^\ast \). Assume \(p \) is prime in \(R \). Assume \(p = xy \). Then \(p \) divides \(xy \). Since \(p \) is prime, this implies that \(p \) divides either \(x \) or \(y \). The situation being symmetrical with respect to \(x \) and \(y \), we may assume that \(p \) divides \(x \). Let \(z \in R \) be such that \(x = pz \). Now \(p = xy = pzy \) and \(p(1 - zy) = 0 \). Since \(p \) is not a zero divisor, this implies that \(1 - zy = 0 \), i.e. \(zy = 1 \) and so \(1 = 1 \) and so \(y \in R^\ast \).

5. Let \(f_i \) be the number of words in letters \(a \) and \(c \)'s of length \(n \) without the subword \(abc \).

5a. Find a recursive formula for \(f_n \).

5b. Compute \(f_0 \) and \(f_1 \).

(20 pts.)

Answer: Clearly \(f_1 = 1 \) (the empty word), \(f_2 = 9 \), \(f_3 = 27 - 1 = 26 \) (all but \(abc \)), \(f_4 = 3^4 - 6 \) (all but \(abca, abeb, abcc, aabc, babc, cabc \)). Now let \(n \geq 3 \). Given a word \(w \) without \(abc \) of length \(n - 1 \), we can freely add \(a \) or \(b \) to the end of \(w \) to obtain the words \(wa \) and \(wb \) without
We can also add c to get the words wa, wb and wc without abc in case the word w of length \(n - 1 \) does not end with ab. If \(g_n \) denotes the number of words without abc that end with ab then, the above discussion shows that

\[
f_n = 3(f_{n-1} - g_{n-1}) + 2g_{n-1}.
\]

So let us compute \(g_n \). Clearly to any word \(w \) without abc of length \(n - 2 \), we can add ab to the end to get \(wab \), a word without abc and that ends with ab. Thus,

\[
g_n = f_{n-2}.
\]

By using this formula we can compute \(g_n \) recursively:

\[
f_1 = 1,
\]

\[
f_2 = 9,
\]

\[
f_3 = 3f_2 - f_0 = 27 - 1 = 26
\]

\[
f_4 = 3f_3 - f_1 = 3 \times 26 - 1 = 75
\]

\[
f_5 = 3f_4 - f_2 = 3 \times 75 - 9 = 216
\]

\[
f_6 = 3f_5 - f_3 = 3 \times 216 - 26 = 622
\]

\[
f_7 = 3f_6 - f_4 = 3 \times 622 - 75 = 1866 - 75 = 1791.
\]

6. How many irreducible polynomials are there in \(\mathbb{Z}[X] \) of the form \(X^2 + aX + b \) where \(a, b \in \{-2, -1, 0, 1, 2\} \)? (15 pts.)

Answer: A reducible polynomial of the form \(X^2 + aX + b \) must be a product of two monic polynomials of degree 1, thus they must have at least one root in \(\mathbb{Z} \). Since the roots are given by

\[
\pm \sqrt{a^2 - 4b}
\]

the coefficients \(a \) and \(b \) must satisfy the following two conditions:

a) the discriminant \(a^2 - 4b \) must be a perfect square in \(\mathbb{Z} \), and

b) Since an eventual root must be in \(\mathbb{Z} \) and not in \(\mathbb{Q} \), \(-a + \sqrt{a^2 - 4b} \) must be divisible by 2, i.e. \(a^2 - 4b \) and \(a \) must be of the same parity, but this is always the case.

We compute \(a^2 - 4b \) case by case to see which pairs \((a, b) \) satisfy the condition a (condition b is automatically satisfied):

<table>
<thead>
<tr>
<th>(a^2 - 4b)</th>
<th>(a = -2)</th>
<th>(a = -1)</th>
<th>(a = 0)</th>
<th>(a = 1)</th>
<th>(a = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b = -2)</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>(b = -1)</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>(b = 0)</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(b = 1)</td>
<td>0</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>(b = 2)</td>
<td>-4</td>
<td>-7</td>
<td>-8</td>
<td>-7</td>
<td>-4</td>
</tr>
</tbody>
</table>

We printed bold face the output \(a^2 - 4b \) in case it is not a square. There are 15 of them. So there are 15 irreducible polynomials that satisfy the given conditions.

7. Find all irreducible polynomials of degree 3 of \(\mathbb{Z}/2\mathbb{Z} \)[X]. (15 pts.)

Answer: Clearly a reducible polynomial of degree 3 must have a factor of degree 1, i.e. must be divisible either by X or by \(X - 1 \), hence it must have a root (either 0 or 1). Let us list all polynomials of degree 3 and find out the ones that do not have a root, these are the irreducible ones:
<table>
<thead>
<tr>
<th>Polynomial $f(X)$</th>
<th>$f(0)$</th>
<th>$f(1)$</th>
<th>Result</th>
<th>Decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^3</td>
<td>0</td>
<td>1</td>
<td>reducible</td>
<td>XXX</td>
</tr>
<tr>
<td>$X^3 + 1$</td>
<td>1</td>
<td>0</td>
<td>reducible</td>
<td>$(X + 1)(X^2 + X + 1)$</td>
</tr>
<tr>
<td>$X^3 + X$</td>
<td>0</td>
<td>0</td>
<td>reducible</td>
<td>$X(X + 1)^2$</td>
</tr>
<tr>
<td>$X^3 + X + 1$</td>
<td>1</td>
<td>1</td>
<td>irreducible</td>
<td></td>
</tr>
<tr>
<td>$X^3 + X^2$</td>
<td>0</td>
<td>0</td>
<td>reducible</td>
<td>$X^2(X + 1)$</td>
</tr>
<tr>
<td>$X^3 + X^2 + 1$</td>
<td>1</td>
<td>1</td>
<td>irreducible</td>
<td></td>
</tr>
<tr>
<td>$X^3 + X^2 + X$</td>
<td>0</td>
<td>1</td>
<td>reducible</td>
<td>$X(X^2 + X + 1)$</td>
</tr>
<tr>
<td>$X^3 + X^2 + X + 1$</td>
<td>1</td>
<td>0</td>
<td>reducible</td>
<td>$(X+1)^3$</td>
</tr>
</tbody>
</table>