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1. Let p|q mean p ∧ ¬q. Show that the formula ¬p is not tautologically equivalent to a 

proposition whose only connective is |. (10 pts.) 

Proof: We first show that no proposition with | as the only connective can assume the truth 

value always 1. Assume not. Let α be such a proposition of smallest length. Write α = β|γ. 

Then β must always assume the truth value 1, contradicting the fact that α was the smallest 

such proposition. 

We can now show that no proposition with | as the only connective can be tautologically 

equivalent to ¬p. 

A proposition α = α(p, ...) with | as the only connective is of the form 

β(p, ...)|γ(p, ...) 

for some shorter propositions β and γ. Here “...” denotes the fact that we may have other atomic 

propositions in the expressions. Choose α to be tautologically equivalent to ¬p and of minimal 

length with this property. Since α is tautologically equivalent to ¬p we must have, 

a) β(0, ...) = 1 and γ(0, ...) = 0 (so that α(0, ...) = ¬0 = 1) and 

b) Either β(1, ...) = 0 or γ(1, ...) = 1 (so that α(1, ...) = ¬1 = 0). 

Let us consider the two subcases of case b separately. 

If β(1, ...) = 0, then, because of condition a, β is itself equivalent to ¬p, contradicting the 

fact that α is of minimal length with this property. Thus β(1, ...) = 1. Thus β always assumes 

the truth value 1, contradicting our first fact. 

 

2. How many words can you write using all the letters of ABRAKADABRA? (A must be 

used 5 times, B twice etc.) (10 pts.) 

Answer: Let us first replace the five A’s by A1, A2, A3, A4, A5 in the order of their 

apparence and the two B’s and R’s by B1 and B2 and R1 and R2 in that order. Now we have 11 

different letters. We can order them in 11! different ways. Identifying the A’s, B’s and R’s 

reduces this number to 11!/(5!2!2!) = 11×10×9×8×7×6/4 = 11×10×9×2×7×6 = 110 × 18 × 42 = 

1980 × 42 = 83160. 

 

3. Consider the polynomial (X1 + X2 + ... + Xn)
k 

in n variables X1, ..., Xn. When multiplied 

out, this polynomial is equal to a polynomial of the form 
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for some a(i1, ..., in) ∈ �. Here, k runs over all natural numbers and i1, i2, ..., in run over all 

natural numbers whose sum is k. Find a(i1, ..., in). Applying the above formula to various 

values of X1, X2, ..., Xn deduce some combinatorial formulas. (20 pts.) 

Answer: Write the product (X1 + X2 + ... + Xn)
k
 in the form 

(X1 + X2 + ... + Xn) (X1 + X2 + ... + Xn) ... (X1 + X2 + ... + Xn). 

Here, there are k factors. To execute the multiplication, from each factor we choose one of 

the Xi’s and multiply these choice to get some monomial of the form ni
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..., in whose sum is k, we have to find out in how many ways we can choose the Xi’s from each 
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many ways. This can also be written as, 
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Let us take Xi = 1 for all n to get, 
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a nice formula to my taste. 

 

4. Show that in any ring a prime element is irreducible. (10 pts.) 

Proof: Let R be any (commutative) ring (with 1). Recall that an element p ∈ R \ R* which 

is not a zero divisor is called prime if whenever p divides xy then p divides either x or y. An 

element p ∈ R \ R* which is not a zero divisor is called irreducible if whenever p = xy then 

either x or y is in R
*
. Assume p is prime in R. Assume p = xy. Then p divides xy. Since p is 

prime, this implies that p divides either x or y. The situation being symmetrical with respect to 

x and y, we may assume that p divides x. Let z ∈ R be such that x = pz. Now p = xy = pzy and 

p(1 − zy) = 0. Since p is not a zerodivisor, this implies that 1 − zy = 0, i.e. zy = 1 and so  = 1 and 

so y ∈ R*. 

 

5. Let fn be the number of words in letters a, b and c’s of length n without the subword abc. 

5a. Find a recursive formula for fn. 

5b. Compute f6 and f7. 

(20 pts.) 

Answer: Clearly f1 = 1 (the empty word), f2 = 9, f3 = 27 − 1 = 26 (all but abc), f4 = 3
4
 − 6 

(all but abca, abcb, abcc, aabc, babc, cabc). Now let n ≥ 3. Given a word w without abc of 

length n − 1, we can freely add a or b to the end of w to obtain the words wa and wb without 



abc. We can also add c to get the words wa, wb and wc without abc in case the word w of 

length n − 1 does not end with ab. If gn denotes the number of words without abc that end with 

ab then, the above discussion shows that 

fn = 3(fn−1 − gn−1) + 2gn−1. 

So let us compute gn. Clearly to any word w without abc of length n − 2, we can add ab to the 

end to get wab, a word without abc and that ends with ab. Thus, 

gn = fn−2. 

Therefore  

fn = 3(fn−1 − gn−1) + 2gn−1 = 3(fn−1 − fn−3) + 2fn−3 = 3fn−1 − fn−3. 

By using this formula we can compute fn recursively: 

f1 = 1 

f2 = 9, 

f3 = 3f2 − f0 = 27 − 1 = 26 

f4 = 3f3 − f1 = 3×26 − 1 = 75 

f5 = 3f4 − f2 = 3×75 − 9 = 216 

f6 = 3f5 − f3 = 3×216 − 26 = 622 

f7 = 3f6 − f4 = 3×622 − 75 = 1866 − 75 = 1791. 

 

6. How many irreducible polynomials are there in �[X] of the form X
2
 + aX + b where a, b 

∈ {−2, −1, 0, 1, 2}? (15 pts.) 

Answer: A reducible polynomial of the form X
2
 + aX + b must be a product of two monic 

polynomials of degree 1, thus they must have at least one root in �. Since the roots are given by 
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the coefficients a and b must satisfy the following two conditions: 

a) the discriminant a
2
 − 4b must be a perfect square in �, and 

b) Since an eventual root must be in � and not in �, −a + √(a
2
 − 4b) must be divisible by 

2, i.e. a
2
 − 4b and a must be of the same parity, but this is always the case. 

We compute a
2
 − 4b case by case to see which pairs (a, b) satisfy the condition a (condition 

b is automatically satisfied): 

a
2
 − 4b a = −2 a = −1 a = 0  a = 1 a = 2 

b = −2 12 9 8 9 12 

b = −1 8 5 4 5 8 

b = 0 4 1 0 1 4 

b = 1 0 −−−−3 −−−−4 −−−−3 0 

b = 2 −−−−4 −−−−7 −−−−8 −−−−7 −−−−4 

We printed bold face the output a
2
 − 4b in case it is not a square. There are 15 of them. 

So there are 15 irreducible polynomials that satisfy the given conditions. 

 

7. Find all irreducible polynomials of degree 3 of (�/2�)[X]. (15 pts.) 

Answer: Clearly a reducible polynomial of degree 3 must have a factor of degree 1, i.e. 

must be divisible either by X or by X − 1, hence it must have a root (either 0 or 1). Let us list all 

polynomials of degree 3 and find out the ones that do not have a root, these are the irreducible 

ones: 



 

Polynomial f(X) f(0) f(1) Result Decomposition 

X
 3 

0 1 reducible XXX 

X
 3

 + 1
 

1 0 reducible (X + 1)(X
2
 + X + 1) 

X
 3

 + X 0 0 reducible X(X + 1)
2 

X
 3

 + X + 1 1 1 irreducible  

X
 3

 + X
 2 

0 0 reducible X
2
(X + 1) 

X
 3

  + X
 2 

+ 1
 

1 1 irreducible  

X
 3

  + X
 2 

+ X 0 1 reducible X(X
2
 + X + 1) 

X
 3

 + X
 2

 + X + 1 1 0 reducible (X+1)
3 

 


