Math 131 Final January 6th, 2005 Ali Nesin

1. Let p|q mean $p \land \neg q$. Show that the formula $\neg p$ is not tautologically equivalent to a proposition whose only connective is |. (10 pts.)|

Proof: We first show that no proposition with I as the only connective can assume the truth value always 1. Assume not. Let α be such a proposition of smallest length. Write $\alpha = \beta i \gamma$. Then β must always assume the truth value 1, contradicting the fact that α was the smallest such proposition.

We can now show that no proposition with | as the only connective can be tautologically equivalent to $\neg p$.

A proposition $\alpha = \alpha(p, ...)$ with | as the only connective is of the form

$$\beta(p, ...)|\gamma(p, ...)$$

for some shorter propositions β and γ . Here "..." denotes the fact that we may have other atomic propositions in the expressions. Choose α to be tautologically equivalent to $\neg p$ and of minimal length with this property. Since α is tautologically equivalent to $\neg p$ we must have,

a) $\beta(0, ...) = 1$ and $\gamma(0, ...) = 0$ (so that $\alpha(0, ...) = \neg 0 = 1$) and

b) Either $\beta(1, ...) = 0$ or $\gamma(1, ...) = 1$ (so that $\alpha(1, ...) = \neg 1 = 0$).

Let us consider the two subcases of case b separately.

If $\beta(1, ...) = 0$, then, because of condition a, β is itself equivalent to $\neg p$, contradicting the fact that α is of minimal length with this property. Thus $\beta(1, ...) = 1$. Thus β always assumes the truth value 1, contradicting our first fact.

2. *How many words can you write using all the letters of* ABRAKADABRA? (A *must be used* 5 *times*, B *twice etc.*) (10 pts.)

Answer: Let us first replace the five A's by A₁, A₂, A₃, A₄, A₅ in the order of their apparence and the two B's and R's by B₁ and B₂ and R₁ and R₂ in that order. Now we have 11 different letters. We can order them in 11! different ways. Identifying the A's, B's and R's reduces this number to $11!/(5!2!2!) = 11 \times 10 \times 9 \times 8 \times 7 \times 6/4 = 11 \times 10 \times 9 \times 2 \times 7 \times 6 = 110 \times 18 \times 42 = 1980 \times 42 = 83160$.

3. Consider the polynomial $(X_1 + X_2 + ... + X_n)^k$ in *n* variables $X_1, ..., X_n$. When multiplied out, this polynomial is equal to a polynomial of the form

$$\sum_{i_1+i_2+\ldots+i_n=k} a(i_1,\ldots,i_n) X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}$$

for some $a(i_1, ..., i_n) \in \mathbb{N}$. Here, k runs over all natural numbers and $i_1, i_2, ..., i_n$ run over all natural numbers whose sum is k. Find $a(i_1, ..., i_n)$. Applying the above formula to various values of $X_1, X_2, ..., X_n$ deduce some combinatorial formulas. (20 pts.)

Answer: Write the product $(X_1 + X_2 + ... + X_n)^k$ in the form

 $(X_1 + X_2 + \dots + X_n) (X_1 + X_2 + \dots + X_n) \dots (X_1 + X_2 + \dots + X_n).$

Here, there are *k* factors. To execute the multiplication, from each factor we choose one of the X_i 's and multiply these choice to get some monomial of the form $X_1^{i_1}X_2^{i_2}...X_n^{i_n}$. Given i_1 , ..., i_n whose sum is *k*, we have to find out in how many ways we can choose the X_i 's from each factor so as to obtain $X_1^{i_1}X_2^{i_2}...X_n^{i_n}$. We have *k* factors to choose i_1 many X_1 's. Thus $X_1^{i_1}$ can be chosen in $\binom{k}{i_1}$ many ways. Now for X_2 , there are only $k - i_1$ factors left to choose from.

From these $k - i_1$ factors we have to choose i_2 many X_2 's. Hence the number of choice for $X_2 i_2^{i_2}$ is $\binom{k-i_1}{i_2}$. In a similar way, we find that the number of choices for X_3 is $\binom{k-i_1-i_2}{i_3}$. Hence the monomial $X_1^{i_1}X_2^{i_2}...X_n^{i_n}$ can be chosen in

$$\binom{k}{i_1}\binom{k-i_1}{i_2}\binom{k-i_1-i_2}{i_3}\cdots\binom{k-i_1-i_2-\ldots-i_{n-1}}{i_n}$$

many ways. This can also be written as,

$$\begin{pmatrix} k \\ i_1 \end{pmatrix} \begin{pmatrix} k - i_1 \\ i_2 \end{pmatrix} \begin{pmatrix} k - i_1 - i_2 \\ i_3 \end{pmatrix} \dots \begin{pmatrix} k - i_1 - i_2 - \dots - i_{n-1} \\ i_n \end{pmatrix}$$

$$= \frac{k!}{i_1!(k - i_1)!} \frac{(k - i_1)!}{i_2!(k - i_1 - i_2)!} \frac{(k - i_1 - i_2)!}{i_3!(k - i_1 - i_2 - i_3)!} \dots \frac{(k - i_1 - i_2 - \dots - i_{n-1})!}{i_n!(k - i_1 - i_2 - i_3 - \dots - i_n)!}$$

$$= \frac{k!}{i_1!i_2!\dots i_n!}.$$

Thus

$$a(i_1,...,i_n) = \frac{(i_1 + ... + i_n)!}{i_1!i_2!...i_n!}.$$

Application. Thus,

$$\begin{aligned} (X_1 + \dots + X_n)^k &= \sum_{i_1 + i_2 + \dots + i_n = k} a(i_1, \dots, i_n) X_1^{i_1} X_2^{i_2} \dots X_n^{i_n} \\ &= \sum_{i_1 + i_2 + \dots + i_n = k} \frac{(i_1 + \dots + i_n)!}{i_1! i_2! \dots i_n!} X_1^{i_1} X_2^{i_2} \dots X_n^{i_n} \end{aligned}$$

Let us take $X_i = 1$ for all *n* to get,

$$\sum_{i_1+i_2+\ldots+i_n=k} \frac{(i_1+\ldots+i_n)!}{i_1!i_2!\ldots i_n!} = n^k,$$

a nice formula to my taste.

4. Show that in any ring a prime element is irreducible. (10 pts.)

Proof: Let *R* be any (commutative) ring (with 1). Recall that an element $p \in R \setminus R^*$ which is not a zero divisor is called **prime** if whenever *p* divides *xy* then *p* divides either *x* or *y*. An element $p \in R \setminus R^*$ which is not a zero divisor is called **irreducible** if whenever p = xy then either *x* or *y* is in R^* . Assume *p* is prime in *R*. Assume p = xy. Then *p* divides *xy*. Since *p* is prime, this implies that *p* divides either *x* or *y*. The situation being symmetrical with respect to *x* and *y*, we may assume that *p* divides *x*. Let $z \in R$ be such that x = pz. Now p = xy = pzy and p(1 - zy) = 0. Since *p* is not a zerodivisor, this implies that 1 - zy = 0, i.e. zy = 1 and so = 1 and so $y \in R^*$.

5. Let f_n be the number of words in letters a, b and c's of length n without the subword abc. **5a.** Find a recursive formula for f_n .

5b. Compute f_6 and f_7 .

(20 pts.)

Answer: Clearly $f_1 = 1$ (the empty word), $f_2 = 9$, $f_3 = 27 - 1 = 26$ (all but *abc*), $f_4 = 3^4 - 6$ (all but *abca*, *abcb*, *abcc*, *aabc*, *babc*, *cabc*). Now let $n \ge 3$. Given a word w without *abc* of length n - 1, we can freely add a or b to the end of w to obtain the words wa and wb without

abc. We can also add *c* to get the words *wa*, *wb* and *wc* without *abc* in case the word *w* of length n - 1 does not end with *ab*. If g_n denotes the number of words without *abc* that end with *ab* then, the above discussion shows that

$$f_n = 3(f_{n-1} - g_{n-1}) + 2g_{n-1}$$

So let us compute g_n . Clearly to any word w without *abc* of length n - 2, we can add *ab* to the end to get *wab*, a word without *abc* and that ends with *ab*. Thus,

$$g_n = f_{n-2}$$
.

Therefore

$$f_n = 3(f_{n-1} - g_{n-1}) + 2g_{n-1} = 3(f_{n-1} - f_{n-3}) + 2f_{n-3} = 3f_{n-1} - f_{n-3}.$$

By using this formula we can compute f_n recursively:

 $f_1 = 1$ $f_2 = 9,$ $f_3 = 3f_2 - f_0 = 27 - 1 = 26$ $f_4 = 3f_3 - f_1 = 3 \times 26 - 1 = 75$ $f_5 = 3f_4 - f_2 = 3 \times 75 - 9 = 216$ $f_6 = 3f_5 - f_3 = 3 \times 216 - 26 = 622$ $f_7 = 3f_6 - f_4 = 3 \times 622 - 75 = 1866 - 75 = 1791.$

6. How many irreducible polynomials are there in $\mathbb{Z}[X]$ of the form $X^2 + aX + b$ where $a, b \in \{-2, -1, 0, 1, 2\}$? (15 pts.)

Answer: A reducible polynomial of the form $X^2 + aX + b$ must be a product of two monic polynomials of degree 1, thus they must have at least one root in \mathbb{Z} . Since the roots are given by

$$\frac{-a \pm \sqrt{a^2 - 4b}}{2}$$

the coefficients *a* and *b* must satisfy the following two conditions:

- a) the discriminant $a^2 4b$ must be a perfect square in \mathbb{Z} , and
- b) Since an eventual root must be in \mathbb{Z} and not in \mathbb{Q} , $-a + \sqrt{a^2 4b}$ must be divisible by 2, i.e. $a^2 4b$ and *a* must be of the same parity, but this is always the case.

We compute $a^2 - 4b$ case by case to see which pairs (a, b) satisfy the condition a (condition b is automatically satisfied):

$a^2 - 4b$	a = -2	a = -1	a = 0	<i>a</i> = 1	<i>a</i> = 2
b = -2	12	9	8	9	12
b = -1	8	5	4	5	8
b = 0	4	1	0	1	4
<i>b</i> = 1	0	-3	-4	-3	0
<i>b</i> = 2	-4	-7	-8	-7	-4

We printed bold face the output $a^2 - 4b$ in case it is not a square. There are 15 of them. So there are 15 irreducible polynomials that satisfy the given conditions.

7. *Find all irreducible polynomials of degree* 3 *of* $(\mathbb{Z}/2\mathbb{Z})[X]$. (15 pts.)

Answer: Clearly a reducible polynomial of degree 3 must have a factor of degree 1, i.e. must be divisible either by X or by X - 1, hence it must have a root (either 0 or 1). Let us list all polynomials of degree 3 and find out the ones that do not have a root, these are the irreducible ones:

Polynomial $f(X)$	<i>f</i> (0)	<i>f</i> (1)	Result	Decomposition
X^3	0	1	reducible	XXX
$X^{3} + 1$	1	0	reducible	$(X+1)(X^2+X+1)$
$X^3 + X$	0	0	reducible	$X(X+1)^2$
$X^{3} + X + 1$	1	1	irreducible	
$X^{3} + X^{2}$	0	0	reducible	$X^{2}(X+1)$
$X^{3} + X^{2} + 1$	1	1	irreducible	
$X^3 + X^2 + X$	0	1	reducible	$X(X^2 + X + 1)$
$X^{3} + X^{2} + X + 1$	1	0	reducible	$(X+1)^3$