Math 131 Final
January 6th, 2005
Ali Nesin

1. How many words can you write using all the letters of ABRAKADABRA? (A must be used 5 times, B twice etc.) (10 pts.)
2. Consider the polynomial $\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{k}$ in n variables X_{1}, \ldots, X_{n}. When multiplied out, this polynomial is equal to a polynomial of the form

$$
\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} a\left(i_{1}, \ldots, i_{n}\right) X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}
$$

for some $a\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}$. Here, k runs over all natural numbers and $i_{1}, i_{2}, \ldots, i_{n}$ run over all natural numbers whose sum is k. Find $a\left(i_{1}, \ldots, i_{n}\right)$. Applying the above formula to various values of $X_{1}, X_{2}, \ldots, X_{n}$ deduce some combinatorial formulas. (20 pts.)
3. Let f_{n} be the number of words in letters a, b and c 's of length n without the subword abc.

3a. Find a recursive formula for f_{n}.
3b. Compute f_{6} and f_{7}.
(20 pts.)
4. How many irreducible polynomials are there in $\mathbb{Z}[X]$ of the form $X^{2}+a X+b$ where a, b $\in\{-2,-1,0,1,2\} ?$ (15 pts.)
5. Find all irreducible polynomials of degree 3 of $(\mathbb{Z} / 2 \mathbb{Z})[X]$. (15 pts .)
$(\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ is the ring with two elements where $1+1=0$.)

