Math 131 Final January 6th, 2005 Ali Nesin

1. *How many words can you write using all the letters of* ABRAKADABRA? (A *must be used* 5 *times*, B *twice etc.*) (10 pts.)

2. Consider the polynomial $(X_1 + X_2 + ... + X_n)^k$ in *n* variables $X_1, ..., X_n$. When multiplied out, this polynomial is equal to a polynomial of the form

$$\sum_{i_1+i_2+\ldots+i_n=k} a(i_1,\ldots,i_n) X_1^{i_1} X_2^{i_2} \ldots X_n^{i_n}$$

for some $a(i_1, ..., i_n) \in \mathbb{N}$. Here, k runs over all natural numbers and $i_1, i_2, ..., i_n$ run over all natural numbers whose sum is k. Find $a(i_1, ..., i_n)$. Applying the above formula to various values of $X_1, X_2, ..., X_n$ deduce some combinatorial formulas. (20 pts.)

3. Let f_n be the number of words in letters a, b and c's of length n without the subword abc.
3a. Find a recursive formula for f_n.
3b. Compute f₆ and f₇.
(20 pts.)

4. *How many irreducible polynomials are there in* $\mathbb{Z}[X]$ *of the form* $X^2 + aX + b$ *where a, b* $\in \{-2, -1, 0, 1, 2\}$? (15 pts.)

5. *Find all irreducible polynomials of degree* 3 *of* $(\mathbb{Z}/2\mathbb{Z})[X]$. (15 pts.) $(\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ is the ring with two elements where 1 + 1 = 0.)