Math 131 Midterm Fall 2004 Ali Nesin

All answers and claims which are worth proven should be proven.

1a. How many words composed with letters a and b of length n and with an even number of b's are there?

1b. How many words composed with letters a and b of length n and with at least as many b's as a's are there?

2a. Show that $n! > 2^n$ for *n* large enough. **2b.** Show that $(x - 1)^n \ge x^n - nx^{n-1}$ for all x > 1. **2c.** Show that if 0 < x < 1 and n > 0 is a natural number, then $(1 - x)^n \le 1 - nx + n(n-1) x^2/2$.

3. Let p|q mean $p \land \neg q$.

3a. Draw the truth tables of p|q, p|p, p|(p|q), (p|q)|(q|p), p|(q|p).

3b. Is it true that any proposition is tautologically equivalent to a proposition whose only connective is I, i.e. can we realize any truth table with propositions using only the connective I.

4. Show that any any table that looks like a truth table is really the truth table of a proposition written using \lor , \land and \neg as connectives. Mathematically speaking, show that for any function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ there is a proposition $\alpha(p_1, ..., p_n)$ of the propositional logic written with connectives \lor , \land and \neg and basic propositions $p_1, ..., p_n$ such that for any evaluation (i.e. function) $d: \{p_1, ..., p_n\} \rightarrow \{0, 1\}$, we have $d(\alpha(p_1, ..., p_n)) = f(d(p_1), ..., d(p_n))$.