Math 131
 Midterm
 Fall 2004
 Ali Nesin

All answers and claims which are worth proven should be proven.
1a. How many words composed with letters a and b of length n and with an even number of b 's are there?

1b. How many words composed with letters a and b of length n and with at least as many b 's as a 's are there?

2a. Show that $n!>2^{n}$ for n large enough.
2b. Show that $(x-1)^{n} \geq x^{n}-n x^{n-1}$ for all $x>1$.
2c. Show that if $0<x<1$ and $n>0$ is a natural number, then

$$
(1-x)^{n} \leq 1-n x+n(n-1) x^{2} / 2
$$

3. Let $p l q$ mean $p \wedge \neg q$.

3a. Draw the truth tables of $p|q, p| p, p|(p \mid q),(p \mid q)|(q \mid p), p \mid(q \mid p)$.
3b. Is it true that any proposition is tautologically equivalent to a proposition whose only connective is I, i.e. can we realize any truth table with propositions using only the connective I.
4. Show that any any table that looks like a truth table is really the truth table of a proposition written using \vee, \wedge and \neg as connectives. Mathematically speaking, show that for any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ there is a proposition $\alpha\left(p_{1}, \ldots, p_{n}\right)$ of the propositional logic written with connectives \vee, \wedge and \neg and basic propositions p_{1}, \ldots, p_{n} such that for any evaluation (i.e. function) $d:\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow\{0,1\}$, we have $d\left(\alpha\left(p_{1}, \ldots, p_{n}\right)\right)=f\left(d\left(p_{1}\right), \ldots, d\left(p_{n}\right)\right)$.

