1. Find all abelian groups of order 1728. How many of them are there?
2. Let U be the subset of $\operatorname{Mat}_{3}(\mathbb{R})$ consisting of those matrices whose elements below the diagonal are 0 , those on the diagonal are nonzero. Show that U is a group under multiplication. Find $[U, U]$. Show that U is nilpotent. Find its class. Generalize your answer as much as you can.
3. An abelian group M has a composition series if and only if M is finite.
4. If G is a finitely generated abelian group, then every surjective endomorphism of G is an automorphism.
5. Let R be a commutative ring with identity, and let D be the subset of R consisiting of the zero divisors in R. Then D contains at least one prime ideal of R.
6. Let R be a commutative ring with identity and C be a subset of R having the following properties
(i) $R \backslash C$ is closed under multiplication.
(ii) For any $c \in C$, we have $R c \subseteq C$.

Show that C is a union of prime ideals.
7. Let R be a ring with identity, and let \mathcal{P} be a collection of ideals in R.

For each subset A of R, set $\Gamma_{A}:=\{P \in \mathcal{P}: A \nsubseteq P\}$. Put $\tau:=\left\{\Gamma_{A} \in \mathcal{P}: A \subseteq\right.$ $R\}$. Prove that τ is a topology on \mathcal{P}, i.e., show that \varnothing, \mathcal{P} belong to τ, that the intersection of any two sets in τ belongs to τ, that the union of any family of sets in τ also belongs to τ.
8. Keep the notation of problem 7. If \mathcal{P} contains all maximal ideals of R, show that (\mathcal{P}, τ) is compact.
9. Let R be a ring and let

be a commutative diagram of R-modules and R-module homomorphisms with exact rows. Prove that
(i) if α, γ and λ^{\prime} are monomorphisms, then β is a monomorphism;
(ii) if α, γ and μ are epimorphisms, then β is an epimorphism.
10. Let R be a ring and let

be a commutative diagram of R-modules and R-module homomorphisms with exact rows. Prove that

$$
\frac{\operatorname{Im}(B \rightarrow E) \cap \operatorname{Im}(D \rightarrow E)}{\operatorname{Im}(A \rightarrow E)} \cong \frac{\operatorname{Ker}(B \rightarrow F)}{\operatorname{Ker}(B \rightarrow C)+\operatorname{Ker}(B \rightarrow E)}
$$

(where, for example, $B \rightarrow E$ stands for the map β from B to E).

