1. Find all abelian groups of order 1728. How many of them are there?

2. Let U be the subset of $\text{Mat}_3(\mathbb{R})$ consisting of those matrices whose elements below the diagonal are 0, those on the diagonal are nonzero. Show that U is a group under multiplication. Find $[U,U]$. Show that U is nilpotent. Find its class. Generalize your answer as much as you can.

3. An abelian group M has a composition series if and only if M is finite.

4. If G is a finitely generated abelian group, then every surjective endomorphism of G is an automorphism.

5. Let R be a commutative ring with identity, and let D be the subset of R consisting of the zero divisors in R. Then D contains at least one prime ideal of R.

6. Let R be a commutative ring with identity and C be a subset of R having the following properties

 (i) $R \setminus C$ is closed under multiplication.
 (ii) For any $c \in C$, we have $Rc \subseteq C$.

 Show that C is a union of prime ideals.

7. Let R be a ring with identity, and let \mathcal{P} be a collection of ideals in R.

 For each subset A of R, set $\Gamma_A := \{ P \in \mathcal{P} : A \not\subseteq P \}$. Put $\tau := \{ \Gamma_A \in \mathcal{P} : A \subseteq R \}$. Prove that τ is a topology on \mathcal{P}, i.e., show that \emptyset, \mathcal{P} belong to τ, that the intersection of any two sets in τ belongs to τ, that the union of any family of sets in τ also belongs to τ.

8. Keep the notation of problem 7. If \mathcal{P} contains all maximal ideals of R, show that (\mathcal{P}, τ) is compact.

9. Let R be a ring and let

 $\hfill A \xrightarrow{\lambda} B \xrightarrow{\mu} C \\
 \alpha \downarrow \hfill \beta \hfill \gamma \downarrow \\
 A' \xrightarrow{\lambda'} B' \xrightarrow{\mu'} C'$

 be a commutative diagram of R-modules and R-module homomorphisms with exact rows. Prove that

 (i) if α, γ and λ' are monomorphisms, then β is a monomorphism;
 (ii) if α, γ and μ are epimorphisms, then β is an epimorphism.
10. Let R be a ring and let

\[
\begin{array}{ccc}
A & \xrightarrow{\lambda} & B \\
\downarrow{\alpha} & & \downarrow{\beta} \\
D & \xrightarrow{\lambda'} & E \\
\end{array}
\quad
\begin{array}{ccc}
B & \xrightarrow{\mu} & C \\
\downarrow{\beta} & & \downarrow{\gamma} \\
E & \xrightarrow{\mu'} & F \\
\end{array}
\]

be a commutative diagram of R-modules and R-module homomorphisms with exact rows. Prove that

\[
\frac{\text{Im} (B \to E) \cap \text{Im} (D \to E)}{\text{Im} (A \to E)} \cong \frac{\text{Ker} (B \to F)}{\text{Ker} (B \to C) + \text{Ker} (B \to E)}
\]

(where, for example, $B \to E$ stands for the map β from B to E).