
Math 131 

Make Up Exam 

Ali Nesin 

February 2005 

 

Show your work. Bare answers will not be accepted, not even for partial credit. 

Passing grade is 50. 

 

1. Find the remainder when 37
126

 is divided by 13. (5 pts.) 

Solution: Since 

(−2)
2
 ≡ 4 (mod 13) 

(−2)
3
 ≡ −8 (mod 13) 

(−2)
4
 ≡ 16 ≡ 3 (mod 13) 

(−2)
5
 ≡ −6 (mod 13) 

(−2)
6
 ≡ 12 ≡ −1 (mod 13) 

(−2)
12

 ≡ (−1)
2
 ≡ 1 (mod 13), 

we have, 37
126

 ≡ (−2)
126

 ≡ (−2)
12×10 + 6

 ≡ (−2)
12×10

(−2)
6 ≡ (−2)

6 ≡ −1 ≡ 12 (mod 13).  

 

2. Show that .)1()2(
0

nn

i

i

i

n
−=








−∑ =

 (5 pts.) 

Proof: Since inin

i

n
yx

i

n
yx

−
=∑ 








=+

0
)( for all x and y, taking x = −2 and y = 1, we get 

the answer. 

 

 

3. Let d be the greatest common divisor of the two positive integers a and b.  

3a. Show that there are integers x and y such that ax + by = d. (10 pts.) 

Proof: We proceed by induction on max(a, b). If a = b then we must have d = a = b and in 

this case we take x = 1, y = 0 e.g. This takes care of the first step of the induction, since 

the condition “max(a, b) = 1” is equivalent to the condition “a = b = 1”. Assume from 

now on that we know the result for a′, b′ in case max(a′, b′) < max(a, b). By the first part 

of the proof we may also assume that a ≠ b. By symmetry we may further assume that a > 

b. (If that is not the case, exchange the roles of a and b). Clearly gcd(a − b, b) = gcd(a, b) 

= d (because any number that divides one of the pairs must divide the other pair.) Since a 

− b < a and b < a, max(a−b, b) < a = max(a, b), we may apply inductive hypothesis to 

find two integers x′ and y′ such that (a−b)x′ + by′ = d. Therefore ax′ + b(y′−x′) = d. Take x 

= x′ and y = y′−x′ to finish the proof. 

 

3b. Let a = 23023, b = 24871. Find d, x and y as above. (10 pts.) 

Answer: This is the famous Euclid’s algorithm. We do the successive divisions: 

24871 = 23023 × 1 + 1848 

23023 = 1848 × 12 + 847 

1848 = 847 × 2 + 154 

847 = 154 × 5 + 77 

154 = 77 × 2 + 0 

Therefore d = 77 (the remainder just before the 0 remainder). To find x and y we start 

from the before the last equation and go backwords: 

 77 = 847 − 154×5 



  = 847 − (1848 − 847×2)×5 = −1848×5 + 847×11 

  = −1848×5 + (23023 − 1848×12)×11 = −1848×137 + 23023×11 

  = −(24871 − 23023×1)×137 + 23023×11 = −24871×137 + 23023×148. 

Therefore, we may take x = 148 and y = −137. (There may be other answers. As an 

exercise, given one pair x and y of solution find all the others in terms of x, y, a and b.) 

 

4. Let aX
2
 + bX + c ∈ �[X] have two distinct integer roots. Show that a must divide both 

b and c. (10 pts.) 

Proof: Let α, β ∈ � be the two roots of aX
2
 + bX + c. Then X − α divides aX

2
 + bX + c, 

say, aX
2
 + bX + c = (X − α)(dX + e). Applying β both sides, since α ≠ β, we get dβ + e = 

0. Thus dX + e = dX − dβ = d(X − β). Hence aX
2
 + bX + c = (X − α)(dX + e) = d(X − α)(X 

− β). It follows that a = d, b = −d(α+β), c = dαβ. This proves the statement. 

 

5. Let b, c ∈ �. Show that the necessary and sufficient condition for the equation x
2
 + bx 

+ c = 0 to have a root in � is that b
2
 − 4c is a perfect square in �. (10 pts.) 

Proof: It is well-known that the roots in � are given by the quadratic formula: 

2

42
cbb

x
−±−

= . 

Thus the polynomial has a root in � if and only if b
2
 − 4c is a perfect square in � and if 

one of the two cbb 42 −±−  is even. But if b
2
 − 4c is a perfect square in �, then it is 

easy to check that the numbers cbb 42 −±− are always even. Thus the polynomial has a 

root in � if and only if b
2
 − 4c is a perfect square in �. 

 

6. Let f(X) ∈ �[X] be a monic polynomial (i.e. the leading coefficient of f is 1). Show that 

all the rational roots of f are integers. (10 pts.) 

Proof: Let f(X) = X
n
 + an−1X

n−1
 + ... + a0. Let r/s be a rational root of f with r, s ∈ �. We 

may assume that r and s are prime to each other. We will show that s = ±1, proving that 

the root r/s is an integer. Since r/s is a root, we have f(r/s) = 0, i.e., 

(r/s)
n
 + an−1(r/s)

n−1
 + ... + a0 = 0. 

By equalizing the denominator, we get, 

r
n
 + an−1r

n−1
s + ... + a0s

n−1
 = 0. 

Since s divides all the terms except may be the first one, s must also divide the first term. 

Thus s divides r
n
. Since r and s are prime to each other, this is possible only if s = ±1. 

 

7. Let f(X) = anX
n
 + an−1X

n−1
 + ... + a0 be a real polynomial with an ≠ 0.  

7a. Let α be a real root of f. Show that |α| ≤ sup{1, |an−1/an| + ... + |a0/an|}. (10 pts.) 

Proof: If |α| ≤ 1 this is clear. Assume from now on that |α| ≥ 1. Since 

f(α) = anα
n
 + an−1α

n−1
 + ... + a0 = 0, 

we have, 

αn
 = −(an−1/an)α

n−1
 − (an−2/an)α

n−1
 − ... − (a0/an). 

By taking the absolute values of both sides we get, 

|α|
n
  = |−(an−1/an)α

n−1
 − (an−2/an)α

n−2
 − ... − (a0/an)| 

≤ |an−1/an||α|
n−1

 + |an−2/an||α|
n−2

 + ... + |a0/an| 

≤ |an−1/an||α|
n−1

 + |an−2/an||α|
n−1

 + ... + |a0/an||α|
n−1

 



= (|an−1/an| + |an−2/an| + ... + |a0/an|)|α|
n−1

. 

Hence, 

 |α| ≤ |an−1/an| + |an−2/an| + ... + |a0/an|. 

 

7b. Deduce that there is an algorithm for finding all the integer roots of a polynomial in 

�[X]. (5 pts.) 

Proof: By 7a we need to check only finitely many integers. 

 

8. Let f(X) = anX
n
 + an−1X

n−1
 + ... + a0 ∈ �[X] be a polynomial with an ≠ 0. Let α be a 

rational root of f. Write α = r/s with r, s ∈ � and gcd(r, s) = 1. 

8a. Show that s divides an. (10 pts.) 

Proof: This is similar to the solution of #6. Since f(r/s) = 0, after equalizing the 

denominators, we get, anr
n
 + an−1r

n−1
s + ... + a0s

n
 = 0. Since s appears in all the terms 

except in the first one, s must divide the first term anr
n
. Since r and s are prime to each 

other, this implies that s divides an. 

 

8b. Using #7a show that |r| ≤ sup(|an|, |an−1| + ... + |a0|). (10 pts.) 

Proof: By 8a, |s| ≤ |an|. By 7a, |r/s| ≤ sup{1, |an−1/an| + ... + |a0/an|}, i.e. 

|r|  ≤ |s| sup{1, |an−1/an| + ... + |a0/an|} ≤ |an| sup{1, |an−1/an| + ... + |a0/an|} 

= sup{|an|, |an−1| + ... + |a0 |}. 

 

8c. Deduce that there is an algorithm for finding all the rational roots of a polynomial in 

�[X]. (5 pts.) 

Proof: By 8a we need to try only finitely values for s. By 8b we need to try only finitely 

values for r. Thus we need to check only finitely many rationals. 

 

 


