Math 131
Make Up Exam
Ali Nesin
February 2005
Show your work. Bare answers will not be accepted, not even for partial credit. Passing grade is 50 .

1. Find the remainder when 37^{126} is divided by 13. (5 pts .)

Solution: Since

$$
\begin{aligned}
& (-2)^{2} \equiv 4(\bmod 13) \\
& (-2)^{3} \equiv-8(\bmod 13) \\
& (-2)^{4} \equiv 16 \equiv 3(\bmod 13) \\
& (-2)^{5} \equiv-6(\bmod 13) \\
& (-2)^{6} \equiv 12 \equiv-1(\bmod 13) \\
& (-2)^{12} \equiv(-1)^{2} \equiv 1(\bmod 13),
\end{aligned}
$$

we have, $37^{126} \equiv(-2)^{126} \equiv(-2)^{12 \times 10+6} \equiv(-2)^{12 \times 10}(-2)^{6} \equiv(-2)^{6} \equiv-1 \equiv 12(\bmod 13)$.
2. Show that $\sum_{i=0}^{n}(-2)^{i}\binom{n}{i}=(-1)^{n}$. (5 pts.)

Proof: Since $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$ for all x and y, taking $x=-2$ and $y=1$, we get the answer.
3. Let d be the greatest common divisor of the two positive integers a and b.

3a. Show that there are integers x and y such that $a x+b y=d$. (10 pts.)
Proof: We proceed by induction on $\max (a, b)$. If $a=b$ then we must have $d=a=b$ and in this case we take $x=1, y=0$ e.g. This takes care of the first step of the induction, since the condition " $\max (a, b)=1$ " is equivalent to the condition " $a=b=1$ ". Assume from now on that we know the result for a^{\prime}, b^{\prime} in case $\max \left(a^{\prime}, b^{\prime}\right)<\max (a, b)$. By the first part of the proof we may also assume that $a \neq b$. By symmetry we may further assume that $a>$ b. (If that is not the case, exchange the roles of a and b). Clearly $\operatorname{gcd}(a-b, b)=\operatorname{gcd}(a, b)$ $=d$ (because any number that divides one of the pairs must divide the other pair.) Since a $-b<a$ and $b<a, \max (a-b, b)<a=\max (a, b)$, we may apply inductive hypothesis to find two integers x^{\prime} and y^{\prime} such that $(a-b) x^{\prime}+b y^{\prime}=d$. Therefore $a x^{\prime}+b\left(y^{\prime}-x^{\prime}\right)=d$. Take x $=x^{\prime}$ and $y=y^{\prime}-x^{\prime}$ to finish the proof.

3b. Let $a=23023, b=24871$. Find d, x and y as above. (10 pts.)
Answer: This is the famous Euclid's algorithm. We do the successive divisions:

24871	$=23023 \times 1+1848$
23023	$=1848 \times 12+847$
1848	$=847 \times 2+154$
847	$=154 \times 5+77$
154	$=77 \times 2+0$

Therefore $d=77$ (the remainder just before the 0 remainder). To find x and y we start from the before the last equation and go backwords:

```
77 = 847-154\times5
```

$$
\begin{aligned}
& =847-(1848-847 \times 2) \times 5=-1848 \times 5+847 \times 11 \\
& =-1848 \times 5+(23023-1848 \times 12) \times 11=-1848 \times 137+23023 \times 11 \\
& =-(24871-23023 \times 1) \times 137+23023 \times 11=-24871 \times 137+23023 \times 148 .
\end{aligned}
$$

Therefore, we may take $x=148$ and $y=-137$. (There may be other answers. As an exercise, given one pair x and y of solution find all the others in terms of x, y, a and b.)
4. Let $a X^{2}+b X+c \in \mathbb{Z}[X]$ have two distinct integer roots. Show that a must divide both b and c. (10 pts.)
Proof: Let $\alpha, \beta \in \mathbb{Z}$ be the two roots of $a X^{2}+b X+c$. Then $X-\alpha$ divides $a X^{2}+b X+c$, say, $a X^{2}+b X+c=(X-\alpha)(d X+e)$. Applying β both sides, since $\alpha \neq \beta$, we get $d \beta+e=$ 0 . Thus $d X+e=d X-d \beta=d(X-\beta)$. Hence $a X^{2}+b X+c=(X-\alpha)(d X+e)=d(X-\alpha)(X$ $-\beta)$. It follows that $a=d, b=-d(\alpha+\beta), c=d \alpha \beta$. This proves the statement.
5. Let $b, c \in \mathbb{Z}$. Show that the necessary and sufficient condition for the equation $x^{2}+b x$ $+c=0$ to have a root in \mathbb{Z} is that $b^{2}-4 c$ is a perfect square in $\mathbb{Z} .(10 \mathrm{pts}$.
Proof: It is well-known that the roots in \mathbb{Q} are given by the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2} .
$$

Thus the polynomial has a root in \mathbb{Z} if and only if $b^{2}-4 c$ is a perfect square in \mathbb{Z} and if one of the two $-b \pm \sqrt{b^{2}-4 c}$ is even. But if $b^{2}-4 c$ is a perfect square in \mathbb{Z}, then it is easy to check that the numbers $-b \pm \sqrt{b^{2}-4 c}$ are always even. Thus the polynomial has a root in \mathbb{Z} if and only if $b^{2}-4 c$ is a perfect square in \mathbb{Z}.
6. Let $f(X) \in \mathbb{Z}[X]$ be a monic polynomial (i.e. the leading coefficient off is 1). Show that all the rational roots of f are integers. (10 pts.)
Proof: Let $f(X)=X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}$. Let r / s be a rational root of f with $r, s \in \mathbb{Z}$. We may assume that r and s are prime to each other. We will show that $s= \pm 1$, proving that the root r / s is an integer. Since r / s is a root, we have $f(r / s)=0$, i.e.,

$$
(r / s)^{n}+a_{n-1}(r / s)^{n-1}+\ldots+a_{0}=0
$$

By equalizing the denominator, we get,

$$
r^{n}+a_{n-1} r^{n-1} s+\ldots+a_{0} s^{n-1}=0
$$

Since s divides all the terms except may be the first one, s must also divide the first term. Thus s divides r^{n}. Since r and s are prime to each other, this is possible only if $s= \pm 1$.
7. Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}$ be a real polynomial with $a_{n} \neq 0$.

7a. Let α be a real root off. Show that $|\alpha| \leq \sup \left\{1,\left|a_{n-1} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right\}$. (10 pts.)
Proof: If $|\alpha| \leq 1$ this is clear. Assume from now on that $|\alpha| \geq 1$. Since

$$
f(\alpha)=a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{0}=0
$$

we have,

$$
\alpha^{n}=-\left(a_{n-1} / a_{n}\right) \alpha^{n-1}-\left(a_{n-2} / a_{n}\right) \alpha^{n-1}-\ldots-\left(a_{0} / a_{n}\right) .
$$

By taking the absolute values of both sides we get,

$$
\begin{aligned}
|\alpha|^{n} & =\left|-\left(a_{n-1} / a_{n}\right) \alpha^{n-1}-\left(a_{n-2} / a_{n}\right) \alpha^{n-2}-\ldots-\left(a_{0} / a_{n}\right)\right| \\
& \leq\left|a_{n-1} / a_{n}\left\|\left.\alpha\right|^{n-1}+\left|a_{n-2} / a_{n} \| \alpha\right|^{n-2}+\ldots+\left|a_{0} / a_{n}\right|\right.\right. \\
& \leq\left|a_{n-1} / a_{n}\left\|\left.\alpha\right|^{n-1}+\left|a_{n-2} / a_{n}\left\|\left.\alpha\right|^{n-1}+\ldots+\left|a_{0} / a_{n} \| \alpha\right|^{n-1}\right.\right.\right.\right.
\end{aligned}
$$

$$
=\left(\left|a_{n-1} / a_{n}\right|+\left|a_{n-2} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right)|\alpha|^{n-1}
$$

Hence,
$|\alpha| \leq\left|a_{n-1} / a_{n}\right|+\left|a_{n-2} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|$.
7b. Deduce that there is an algorithm for finding all the integer roots of a polynomial in $\mathbb{Z}[X]$. (5 pts.)
Proof: By 7a we need to check only finitely many integers.
8. Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0} \in \mathbb{Z}[X]$ be a polynomial with $a_{n} \neq 0$. Let α be a rational root of f. Write $\alpha=r / s$ with $r, s \in \mathbb{Z}$ and $\operatorname{gcd}(r, s)=1$.
8a. Show that s divides a_{n}. (10 pts.)
Proof: This is similar to the solution of \#6. Since $f(r / s)=0$, after equalizing the denominators, we get, $a_{n} r^{n}+a_{n-1} r^{n-1} s+\ldots+a_{0} s^{n}=0$. Since s appears in all the terms except in the first one, s must divide the first term $a_{n} r^{n}$. Since r and s are prime to each other, this implies that s divides a_{n}.

8b. Using \#7a show that $|r| \leq \sup \left(\left|a_{n}\right|,\left|a_{n-1}\right|+\ldots+\left|a_{0}\right|\right)$. (10 pts.)
Proof: By $8 \mathrm{a},|s| \leq\left|a_{n}\right|$. By $7 \mathrm{a},|r / s| \leq \sup \left\{1,\left|a_{n-1} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right\}$, i.e.

$$
\begin{aligned}
|r| & \leq|s| \sup \left\{1,\left|a_{n-1} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right\} \leq\left|a_{n}\right| \sup \left\{1,\left|a_{n-1} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right\} \\
& =\sup \left\{\left|a_{n}\right|,\left|a_{n-1}\right|+\ldots+\left|a_{0}\right|\right\} .
\end{aligned}
$$

8c. Deduce that there is an algorithm for finding all the rational roots of a polynomial in $\mathbb{Z}[X]$. (5 pts.)
Proof: By 8 a we need to try only finitely values for s. By 8 b we need to try only finitely values for r. Thus we need to check only finitely many rationals.

