Linear Algebra II Resit September 2001 Ali Nesin

1. Let *V* be the vector space of functions from \mathbb{R} into \mathbb{R} which has $\{\sin \theta, \cos \theta\}$ as a basis. Let $D: V \to V$ be the differentiable operator defined by D(f) = f'. Show that *D* is linear. What is its matrix? Find the minimal polynomial of *D*. Find all iterates of *D*.

2. Let $\ell_2 = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R} \text{ and } \sum_{n \in \mathbb{N}} a_n^2 \text{ converges}\}$. Show that ℓ_2 is a

vector space over \mathbb{R} . Show that its dimension is uncountable.

3. Let *A* and *B* be two square matrices (over a field) of the same dimension. **3a.** Show that *AB* is not invertible iff either *A* or *B* is noninvertible. **3b.** Show that 0 is an eigenvalue of *AB* iff 0 is an eigenvalue of *BA*. **3c.** Show that *AB* and *BA* have the same eigenvalues. **3d.** Show that tr(AB - BA) = 0.

4a. Let $K \le L$ be a field extension. The field *L* can be considered as a vector space over *K* in a natural way. Assume $\dim_K(L) = n < \infty$. Show that the field *L* is isomorphic to a subring of $M_{n \times n}(K)$.

4b. Assume $K = \mathbb{R}$ and $L = \mathbb{C}$. Find explicitly the subring of $M_{2\times 2}(\mathbb{R})$ which is isomorphic to \mathbb{C} .

5. Let V be a vector space of dimension n. Let $T \in \text{End}(V)$ be such that $T^k = 0$ for some natural number k. Assume k is minimum such. Show that $k \le n$.

6. Let *V* be a vector space over a field *K*. Let $(v_i)_{i \in I}$ be a basis of *V*. For $j \in I$, define a function v_j^* from *V* into *K* as follows:

For all $v \in V$, if $v = \sum_{i \in I} \alpha_i v_i$, then $v_j^*(v) = \alpha_j$.

Let $V^* = \operatorname{End}_K(V, K)$.

6a. Show that $v_i^* \in V^*$ for all $j \in J$.

6b. Show that the linear maps v_i^* are linearly independent.

6c. Show that *V* is finite dimensional iff $(v_i^*)_{i \in I}$ form a basis of *V**.

7. Let *V* be a vector space over a field *K*. Let $V^{**} = \text{End}_K(V^*, K)$. For $v \in V$ and $f \in V^{**}$, define $v^{**} : V^* \to K$ by $v^{**}(f) = f(v)$. (Note that, unlike in V^{**} , the ** in v^{**} is just one symbol and has nothing to do with the previous *'s).

7a. Show that $v^{**} \in V^{**}$.

7b. Show that the map $v \mapsto v^{**}$ is a homomorphism of vector spaces from *V* into V^{**} . Call it **

7c. Show that ** is one-to-one.

7d. Show that ** is an isomorphism iff $\dim_{K}(V) < \infty$.

8. Let *V* be a vector space over $\mathbf{K} = \mathbb{R}$ or \mathbb{C} . A map $\langle , \rangle : V \times V \to \mathbf{K}$ is called an inner product in *V* if

a. \langle , \rangle is linear in the first component.

b. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ all $u, v \in V$.

c. $\langle v, v \rangle \ge 0$ all $v \in V$ and it is zero iff v = 0.

8a. Show that $\langle A, B \rangle = tr(B^t A)$ defines an inner product on the space of $n \times m$ matrices over \mathbb{R} .

8b. Show that, on ℓ_2 the "product" $\langle (a_n)_n, \langle (b_n)_n \rangle = \sum a_n b_n$ makes sense and that it is an inner product.

Let *V* be a vector space with an inner product \langle , \rangle . We let $|v| = \sqrt{\langle v, v \rangle}$.

8c. Show that the formula d(u, v) = |u - v| defines a distance on *V*.

8d. (Cauchy-Schwartz) Show that $|\langle u, v \rangle| \leq |u| |v|$ for all u, v in V.

8e*. For $W \leq V$, define $W^{\perp} = \{v \in V : \langle v, W \rangle = 0\}$. Show that $V = W \oplus W^{\perp}$.