1. Let V be the vector space of functions from \mathbb{R} into \mathbb{R} which has \{sin θ, cos θ\} as a basis. Let $D : V \to V$ be the differentiable operator defined by $D(f) = f'$. Show that D is linear. What is its matrix? Find the minimal polynomial of D. Find all iterates of D.

2. Let $\ell_2 = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}$ and $\sum_{n \in \mathbb{N}} a_n^2$ converges\}. Show that ℓ_2 is a vector space over \mathbb{R}. Show that its dimension is uncountable.

3. Let A and B be two square matrices (over a field) of the same dimension.

3a. Show that AB is not invertible iff either A or B is noninvertible.

3b. Show that 0 is an eigenvalue of AB iff 0 is an eigenvalue of BA.

3c. Show that AB and BA have the same eigenvalues.

3d. Show that $\text{tr}(AB - BA) = 0$.

4a. Let $K \leq L$ be a field extension. The field L can be considered as a vector space over K in a natural way. Assume $\dim_K(L) = n < \infty$. Show that the field L is isomorphic to a subring of $M_{n \times n}(K)$.

4b. Assume $K = \mathbb{R}$ and $L = \mathbb{C}$. Find explicitly the subring of $M_{2 \times 2}(\mathbb{R})$ which is isomorphic to \mathbb{C}.

5. Let V be a vector space of dimension n. Let $T \in \text{End}(V)$ be such that $T^k = 0$ for some natural number k. Assume k is minimum such. Show that $k \leq n$.

6. Let V be a vector space over a field K. Let $(v_i)_{i \in I}$ be a basis of V. For $j \in I$, define a function v_j^* from V into K as follows:

For all $v \in V$, if $v = \sum_{i \in I} \alpha_i v_i$, then $v_j^*(v) = \alpha_j$.

Let $V^* = \text{End}_K(V, K)$.

6a. Show that $v_j^* \in V^*$ for all $j \in J$.

6b. Show that the linear maps v_j^* are linearly independent.

6c. Show that V is finite dimensional iff $(v_i^*)_{i \in I}$ form a basis of V^*.

7. Let V be a vector space over a field K. Let $V'' = \text{End}_K(V', K)$. For $v \in V$ and $f \in V''$, define $v^{**} : V' \to K$ by $v^{**}(f) = f(v)$. (Note that, unlike in V'', the ** in v^{**} is just one symbol and has nothing to do with the previous *’s).

7a. Show that $v^{**} \in V^{**}$.

7b. Show that the map $v \mapsto v^{**}$ is a homomorphism of vector spaces from V into V^{**}. Call it $**$

7c. Show that $**$ is one-to-one.

7d. Show that $**$ is an isomorphism iff $\dim_K(V) < \infty$.

Lineral Algebra II
Resit
September 2001
Ali Nesin
8. Let V be a vector space over $K = \mathbb{R}$ or \mathbb{C}. A map $\langle \cdot , \cdot \rangle : V \times V \to K$ is called an inner product in V if

a. $\langle \cdot , \cdot \rangle$ is linear in the first component.

b. $\langle u, v \rangle = \langle v, u \rangle$ all $u, v \in V$.

c. $\langle v, v \rangle \geq 0$ all $v \in V$ and it is zero iff $v = 0$.

8a. Show that $\langle A, B \rangle = \text{tr}(B^tA)$ defines an inner product on the space of $n \times m$ matrices over \mathbb{R}.

8b. Show that, on ℓ_2 the “product” $\langle (a_n)_n, (b_n)_n \rangle = \sum a_n b_n$ makes sense and that it is an inner product.

Let V be a vector space with an inner product $\langle \cdot , \cdot \rangle$. We let $|v| = \sqrt{\langle v, v \rangle}$.

8c. Show that the formula $d(u, v) = |u - v|$ defines a distance on V.

8d. (Cauchy-Schwartz) Show that $|\langle u, v \rangle| \leq |u| |v|$ for all u, v in V.

8e*. For $W \leq V$, define $W^\perp = \{ v \in V : \langle v, W \rangle = 0 \}$. Show that $V = W \oplus W^\perp$.