Linear Algebra II

Resit
September 2001
Ali Nesin

1. Let V be the vector space of functions from \mathbb{R} into \mathbb{R} which has $\{\sin \theta, \cos \theta\}$ as a basis. Let $D: V \rightarrow V$ be the differentiable operator defined by $D(f)=f^{\prime}$. Show that D is linear. What is its matrix? Find the minimal polynomial of D. Find all iterates of D.
2. Let $\ell_{2}=\left\{\left(a_{n}\right)_{n \in \mathbf{N}}: a_{n} \in \mathbb{R}\right.$ and $\sum_{n \in \mathrm{~N}} a_{n}^{2}$ converges $\}$. Show that ℓ_{2} is a vector space over \mathbb{R}. Show that its dimension is uncountable.
3. Let A and B be two square matrices (over a field) of the same dimension.

3a. Show that $A B$ is not invertible iff either A or B is noninvertible.
3b. Show that 0 is an eigenvalue of $A B$ iff 0 is an eigenvalue of $B A$.
3c. Show that $A B$ and $B A$ have the same eigenvalues.
3d. Show that $\operatorname{tr}(A B-B A)=0$.
4a. Let $K \leq L$ be a field extension. The field L can be considered as a vector space over K in a natural way. Assume $\operatorname{dim}_{K}(L)=n<\infty$. Show that the field L is isomorphic to a subring of $M_{n \times n}(K)$.

4b. Assume $K=\mathbb{R}$ and $L=\mathbb{C}$. Find explicitely the subring of $M_{2 \times 2}(\mathbb{R})$ which is isomorphic to \mathbb{C}.
5. Let V be a vector space of dimension n. Let $T \in \operatorname{End}(V)$ be such that $T^{k}=0$ for some natural number k. Assume k is minimum such. Show that $k \leq n$.
6. Let V be a vector space over a field K. Let $\left(v_{i}\right)_{i \in I}$ be a basis of V. For $j \in I$, define a function $v_{j} *$ from V into K as follows:

$$
\text { For all } v \in V \text {, if } v=\sum_{i \in I} \alpha_{i} v_{i} \text {, then } v_{j}^{*}(v)=\alpha_{j}
$$

Let $V^{*}=\operatorname{End}_{K}(V, K)$.
6a. Show that $v_{j}{ }^{*} \in V^{*}$ for all $j \in J$.
$\mathbf{6 b}$. Show that the linear maps $v_{j} *$ are linearly independent.
6c. Show that V is finite dimensional iff $\left(v_{i}\right)_{i \in I}$ form a basis of V^{*}.
7. Let V be a vector space over a field K. Let $V^{* *}=\operatorname{End}_{K}\left(V^{*}, K\right)$. For $v \in V$ and f $\in V^{* *}$, define $v^{* *}: V^{*} \rightarrow K$ by $v^{* *}(f)=f(v)$. (Note that, unlike in $V^{* *}$, the ${ }^{* *}$ in $v^{* *}$ is just one symbol and has nothing to do with the previous *'s).

7a. Show that $v^{* *} \in V^{* *}$.
7b. Show that the map $v \mapsto v^{* *}$ is a homomorphism of vector spaces from V into $V^{* *}$. Call it **

7c. Show that ** is one-to-one.
7d. Show that $* *$ is an isomorphism iff $\operatorname{dim}_{K}(V)<\infty$.
8. Let V be a vector space over $\mathbf{K}=\mathbb{R}$ or \mathbb{C}. A map $\langle\rangle:, V \times V \rightarrow \mathbf{K}$ is called an inner product in V if
a. \langle,$\rangle is linear in the first component.$
b. $\langle u, v\rangle=\overline{\langle v, u\rangle}$ all $u, v \in V$.
c. $\langle v, v\rangle \geq 0$ all $v \in V$ and it is zero iff $v=0$.

8a. Show that $\langle A, B\rangle=\operatorname{tr}\left(B^{\mathrm{t}} A\right)$ defines an inner product on the space of $n \times m$ matrices over \mathbb{R}.

8b. Show that, on ℓ_{2} the "product" $\left\langle\left(a_{n}\right)_{n},\left\langle\left(b_{n}\right)_{n}\right\rangle=\sum a_{n} b_{n}\right.$ makes sense and that it is an inner product.

Let V be a vector space with an inner product \langle,$\rangle . We let |v|=\sqrt{\langle v, v\rangle}$.
8c. Show that the formula $d(u, v)=|u-v|$ defines a distance on V.
8d. (Cauchy-Schwartz) Show that $|\langle u, v\rangle| \leq|u||v|$ for all u, v in V.
$\mathbf{8 e}^{*}$. For $W \leq V$, define $W^{\perp}=\{v \in V:\langle v, W\rangle=0\}$. Show that $V=W \oplus W^{\perp}$.

