Linear Algebra Resit August 2001 Ali Nesin

Justify all your answers. An answer without justification will receive a zero grade. All vector spaces may be considered as vector spaces over the field \mathbb{R} of real numbers.

1a. Is the set $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ a vector space? **1b.** Is the set $\{(x, y, z) \in \mathbb{R}^3 : x + y + z \in \mathbb{Z}\}$ a vector space? **1c.** Is the set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 0\}$ a vector space? **1d.** Is the set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0\}$ a vector space?

2a. What is the subspace of \mathbb{R} generated¹ by $\sqrt{2}$?

2b. What is the subspace of \mathbb{R}^2 generated² by $(1, \pi)$ and $(\sqrt{2}, -3)$?

2c. For what values of a and b does (b, a) belong to the subspace of \mathbb{R}^2 generated by (a, b)?

3. Find

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 - 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1}$$

4. Consider the set *A* of $(x, y, z) \in \mathbb{R}^3$ such that

$$A = \{ (x, y, z) \in \mathbb{R}^3 : \det \begin{pmatrix} 3 & 2 & 0 \\ x & y & z \\ -1 - 1 & 1 \end{pmatrix} = 0 \}.$$

Show that A is a subspace of \mathbb{R}^2 . What is its dimension? Find a basis of A.

5. Show that, for every fixed *t*, the set A_t of $(x, y, z) \in \mathbb{R}^3$ such that

$$\det \begin{pmatrix} 3 & 2 & 0 \\ x & y & z \\ t & -1 & t \end{pmatrix} = 0.$$

is a subspace. What is the dimension of A_t ? (Note that the dimension may depend on *t*). Find a basis of A_t .

6. Let
$$V = \{(x, y, z, t, u) \in \mathbb{R}^5 : x - y + 2z - t + u\}$$
. Let

¹ Subspace generated by an element is the smallest subspace containing this element.

² Subspace generated by two elements is the smallest subspace containing these elements.

$$W = \{ (x, y, z, t, u) \in V : x - 2y + z - t + u = 0 \text{ and } 2x - 3t = 0 \}.$$

We know that V is a vector space over \mathbb{R} and that W is a subspace of V. Find a basis of V, W and V/W.

7. Let $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$. We know (from calculus) that V is a vector space over \mathbb{R} .

7a. Show that the set $(x^n)_{n \in \mathbb{N}}$ is a linearly independent subset of *V*.

7b. Show that the set $(\sin^n x)_{n \in \mathbb{N}}$ is a linearly independent subset of *V*.

8. Let *V* be a vector space. Let $f: V \to V$ be a linear map such that $f \circ f = f$.

8a. Show that $v - f(v) \in \text{Ker}(f)$ for all $v \in V$.

8b. Show that $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}$.

8c. Show that $V = \text{Ker}(f) \oplus \text{Im}(f)$.

8d. Show that f is the identity map on Im(f) and that it is the zero map on Ker(f).