Linear Algebra

Resit
August 2001
Ali Nesin
Justify all your answers. An answer without justification will receive a zero grade. All vector spaces may be considered as vector spaces over the field \mathbb{R} of real numbers.

1a. Is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$ a vector space?
1b. Is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z \in \mathbb{Z}\right\}$ a vector space?
1c. Is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=0\right\}$ a vector space?
$\mathbf{1 d}$. Is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=0\right\}$ a vector space?

2a. What is the subspace of \mathbb{R} generated ${ }^{1}$ by $\sqrt{ } 2$?
2b. What is the subspace of \mathbb{R}^{2} generated 2 by $(1, \pi)$ and $(\sqrt{ } 2,-3)$?
2c. For what values of a and b does (b, a) belong to the subspace of \mathbb{R}^{2} generated by (a, b) ?
3. Find

$$
\left(\begin{array}{rrr}
1 & 1 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)^{-1}
$$

4. Consider the set A of $(x, y, z) \in \mathbb{R}^{3}$ such that

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}: \operatorname{det}\left(\begin{array}{ccc}
3 & 2 & 0 \\
x & y & z \\
-1 & -1 & 1
\end{array}\right)=0\right\} .
$$

Show that A is a subspace of \mathbb{R}^{2}. What is its dimension? Find a basis of A.
5. Show that, for every fixed t, the set A_{t} of $(x, y, z) \in \mathbb{R}^{3}$ such that

$$
\operatorname{det}\left(\begin{array}{ccc}
3 & 2 & 0 \\
x & y & z \\
t & -1 & t
\end{array}\right)=0
$$

is a subspace. What is the dimension of A_{t} ? (Note that the dimension may depend on $t)$. Find a basis of A_{t}.
6. Let $V=\left\{(x, y, z, t, u) \in \mathbb{R}^{5}: x-y+2 z-t+u\right\}$. Let

[^0]$$
W=\{(x, y, z, t, u) \in V: x-2 y+z-t+u=0 \text { and } 2 x-3 t=0\} .
$$

We know that V is a vector space over \mathbb{R} and that W is a subspace of V. Find a basis of V, W and V / W.
7. Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$. We know (from calculus) that V is a vector space over \mathbb{R}.

7a. Show that the set $\left(x^{n}\right)_{n \in \mathbb{N}}$ is a linearly independent subset of V.
7b. Show that the set $\left(\sin ^{n} x\right)_{n \in \mathbb{N}}$ is a linearly independent subset of V.
8. Let V be a vector space. Let $f: V \rightarrow V$ be a linear map such that $f \circ f=f$.

8a. Show that $v-f(v) \in \operatorname{Ker}(f)$ for all $v \in V$.
8b. Show that $\operatorname{Ker}(f) \cap \operatorname{Im}(f)=\{0\}$.
8c. Show that $V=\operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
8d. Show that f is the identity map on $\operatorname{Im}(f)$ and that it is the zero map on $\operatorname{Ker}(f)$.

[^0]: ${ }^{1}$ Subspace generated by an element is the smallest subspace containing this element.
 ${ }^{2}$ Subspace generated by two elements is the smallest subspace containing these elements.

