Linear Algebra

June 2001 Final Exam Ali Nesin

1. Find all isomorphism types of abelian groups of order 90 and 2001. Since $90 = 2 \times 3^2 \times 5$, an abelian group *G* of order 90 is the direct sum of G_2 , G_3 and G_5 where $G_p = \{g \in G : o(g) = p^k \text{ for some } k\}$ is the *p*-primary part of *G*. Since $|G_2| = 2$, $G_2 \approx \mathbb{Z}/2\mathbb{Z}$. Similarly $G_5 \approx \mathbb{Z}/5\mathbb{Z}$. But there are two possibilities for G_3 : Either $G_3 \approx \mathbb{Z}/9\mathbb{Z}$ or $G_3 \approx \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Thus either

 $G \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \approx \mathbb{Z}/90\mathbb{Z} \text{ or } G \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \approx \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$

2. Let V be a vector space. Let $\varphi \in GL_K(V)$ have finite order n.

2a. What can you say about the eigenvalues of φ ?

Let λ be an eigenvalue for φ . Then there is a nonzero vector $v \in V$ such that $\varphi(v) = \lambda v$ and $v = \varphi^n(v) = \lambda^n v$. Since $v \neq 0$, this implies that $\lambda^n = 1$. Therefore all the eigenvalues of φ are *n*th roots of unity.

2b. Should such a φ have to have eigenvalues?

No. Take $K = \mathbb{R}$, $V = \mathbb{R}^2$ and φ to be a rotation of $\pi/2$ radians (90 degrees). Then $\varphi^4 = 1$ and φ has no eigenvalues.

3. Let V be a vector space over a field K of characteristic p > 0. Let $\varphi \in \text{End}_{K}(V)$. 3a. Show that $(\varphi - 1)^{p^{k}} = \varphi^{p^{k}} - 1$.

Proceeding by induction on k (taking pth power k times) it is enough to show for k = 1.

We just compute in the ring $\operatorname{End}_{K}(V)$: $(\varphi - 1)^{p} = \sum_{i=0}^{p} {p \choose i} (-1)^{i} \varphi^{p-i} = \varphi^{p} - 1$ since p divides

 $\begin{pmatrix} p \\ i \end{pmatrix}$ if $i \neq 0, p$ and char(K) = p.

3b. Conclude that if φ has order p^k for some k > 0, then a nonzero vector of V is fixed by φ .

Let *r* be the smallest natural number such that $(\varphi - 1)^{r+1} = 0$. Then $(\varphi - 1)^r \neq 0$ and there is a nonzero vector $v \in V$ such that $(\varphi - 1)^r(v) \neq 0$. If $w = (\varphi - 1)^r(v)$, then $\varphi(w) = w$.

4. Let $V \neq 0$ be a finite dimensional vector space over an algebraically closed field K and let $A \leq GL_K(V)$ be an abelian group. Show that the elements of A have a common nonzero eigenvector.

We proceed by induction on dim(V). If dim(V) = 1 this is clear. If all the elements of A act as scalars, we are done also. Assume otherwise. Let $a \in A$ be nonscalar. Since K is algebraically closed, a has an eigenvalue λ . Let V_{λ} be the λ -eigenspace of a, i.e. $V_{\lambda} = \{v \in V :$ $a(v) = \lambda v\}$. Since A is abelian, for $b \in A$ and $v \in V_{\lambda}$, $ab(v) = ba(v) = b(\lambda v) = \lambda b(v)$. This shows that $A(V_{\lambda}) = V_{\lambda}$. Since a is nonscalar, $V_{\lambda} < V$ so that we can apply the induction hypothesis to V_{λ} . This shows that A (or the image of A in $GL_{K}(V_{\lambda})$) has a common nonzero eigenvector in V_{λ} , hence in V. 5. Let K be a field and $f \in K[X]$ a polynomial.

5a. What is the necessary and sufficient condition on f for $K[X]/\langle f \rangle$ to be a pid?

Any ideal of $K[X]/\langle f \rangle$ is the quotient of an ideal *I* of K[X] containing *f*, therefore any ideal of $K[X]/\langle f \rangle$ is principle. But this is not enough to make $K[X]/\langle f \rangle$ a pid (principle ideal **domain**). Further, $K[X]/\langle f \rangle$ should have no nonzero zerodivisors. This means that either f = 0 or is irreducible.

5b. And in that case what are the invertible elements of the ring $K[X]/\langle f \rangle$?

If f = 0, then the invertible elements are just the constants. If f is irreducible, then $K[X]/\langle f \rangle$ is a field and all its nonzero elements are invertible.

6. Let *R* be a ring and *M* and *N* left *R*-modules.

6a. Is $\operatorname{Hom}_{R}(M, N)$ naturally an *R*-module?

No, not always. In general, one needs *R* to be commutative for this because if $r \in R$ and $f \in \text{Hom}_R(M, N)$, for *rf* to be in $\text{Hom}_R(M, N)$, one needs in particular rsf(m) = r(f(sm)) = (rf)(sm) = s((rf)(m)) = srf(m) for all $s \in R$ and $m \in M$, i.e. (rs - sr)f(M) = 0 for all $s \in R$. If *R* is not commutative, this may not be the case.

6b. Show that $\operatorname{End}_R(M)$ is a (not necessarily commutative) ring with identity Id_M . $\operatorname{End}_R(M)$ is a ring under addition and composition of maps as one can show easily.

6c. What is the necessary and sufficient condition for the submodule RId_M of $\operatorname{End}_R(M)$ to be *naturally* isomorphic to R?

(Note that here we view *R* as a left-module over itself). The map $r \mapsto r \operatorname{Id}_M$ is an *R*-module surjection. This map is one-to-one iff $rM \neq 0$ for any $r \in R \setminus \{0\}$, i.e. if $\operatorname{ann}_R(M) = 0$.

7. Let *R* be a ring and *M* a left *R*-module generated by one element.

7a. Show that $M \approx R/I$ (as left *R*-modules) for some left ideal I of *R*.

Let $m \in M$ be a generator. Then the map $r \mapsto rm$ is a surjective left module homomorphism from R into M. If I is the kernel of this homomorphism $(I = \operatorname{ann}_R(m))$, $R/I \approx M$.

7b. Show that M is irreducible¹ iff I is a maximal left ideal of R. Clear from above.

8. (Schur's Lemma) Let *R* be a ring and *M* and *N* be two irreducible left *R*-modules. 8a. Show that any homomorphism $\varphi : M \to N$ is either 0 or an isomorphism.

Assume $\varphi \neq 0$. Then since $\varphi(M) \leq N$ and $\text{Ker}(\varphi) \leq M$ and since *M* and *N* are irreducible modules, $\varphi(M) = N$ and $\text{Ker}(\varphi) = 0$, i.e. φ is an isomorphism.

8b. Show that $\operatorname{End}_{R}(M)$ is a division ring. Clear from above.

Clear from above.

9. Assume V is a vector space of finite dimension over a field K. Let $A \in \text{End}_{K}(V)$.

9a. Show that the subring K[A] of $End_K(V)$ generated by A and the scalar multiplications λId_V (for $\lambda \in K$) is isomorphic to $K[X]/\langle f \rangle$ for some polynomial $f \in K[X]$.

Clearly $K[A] = \{\lambda_0 + \lambda_1 A + ... + \lambda_k A^k : k \in \mathbb{N}, \lambda_0, ..., \lambda_k \in K\}$, i.e. K[A] is the image of the evaluation map (which is a ring homomorphism from K[X] into $\text{End}_K(V)$) that evaluates X at A. Thus if $\langle f \rangle$ is the kernel of this homomorphism, then $K[A] \approx K[X]/\langle f \rangle$. Note also that this is

¹ A module is called **irreducible** if its only submodules are 0 and itself.

also a vector isomorphism and that f is a polynomial of minimum degree such that f(A) = 0. Since K is a field, one can take f to be monic.

9b. Can you bound the degree of f in terms of $\dim_{K}(V)$? Yes: $\deg(f) = \dim_{K}(K[X]/\langle f \rangle) = \dim_{K} K[A] \le \dim_{K}(\operatorname{End}_{K}(V)) = \dim_{K}(V)^{2}$. 9b. Find f when

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$K = \mathbf{F}_7 \text{ and } A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$

In the first case $f(X) = (X - 1)^2$. In the second case the answer depends on *a*. If a = 1 then f(X) = X - 1. If $a \neq 1$, then f(X) = (X - 1)(X - a).

10. Consider $\mathbb{Z} \times \mathbb{Z}$ as a group (i.e. as a **Z**-module). For $A \in \text{End}_{\mathbb{Z}}(\mathbb{Z} \times \mathbb{Z})$ consider the subring $\mathbb{Z}[A]$ of $\text{End}_{\mathbb{Z}}(\mathbb{Z} \times \mathbb{Z})$ generated by A.

10a. Find the number of minimal generators of $\mathbb{Z}[A]$ as a \mathbb{Z} -module when

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

As in number 9, $\mathbb{Z}[A] \approx \mathbb{Z}[X]/I$ where $I = \{f \in \mathbb{Z}[X] : f(A) = 0\}$. But this time, we cannot say right away that *I* is generated by some polynomial since $\mathbb{Z}[X]$ is not a pid. (However $\mathbb{Z}[X]$ is a Noetherian ring by Hilbert's Basis Theorem from Basic Algebra, but we do not really need this result, and *I* is generated by finitely many polynomials). We will work with $\mathbb{Z}[X]/I$ rather that with $\mathbb{Z}[A]$. Note that

$$Id = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$A^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Thus no nonzero polynomial of degree ≤ 1 is in *I* and $a + bX + cX^2 \in A$ iff a + b + c = b + 2c = 0 iff b = -2a = -2c. Taking a = 1, we see that $1 - 2X + X^2 \in I$. This shows that $I = \langle 1 - 2X + X^2 \rangle$ because this polynomial is monic and the division algorithm still works in $\mathbb{Z}[X]$. Thus the \mathbb{Z} -module $\mathbb{Z}[A]$ is generated by 1 and *A*.

10b. Find the invertible and nilpotent elements of $\mathbb{Z}[A]$ and its idempotents².

Change variables. Set Y = X - 1. Then $\mathbb{Z}[X]/(1 - 2X + X^2) = \mathbb{Z}[Y]/Y^2$. Compute in this latter ring. Let *y* be the image of *Y* in $\mathbb{Z}[Y]/Y^2$. An element of $\mathbb{Z}[Y]/Y^2$ can be uniquely written as a + by. Since $(a + by)^n = a^n + naby$, the element a + by is nilpotent iff a = 0. Therefore only the elements of the form *by* are nilpotent and these correspond to the elements b(x - 1) of $\mathbb{Z}[X]/(1 - 2X + X^2)$, i.e. to the elements b(A - 1) of $\mathbb{Z}[A]$. Taking n = 2, we see that a + by is

² An element *r* of a ring is nilpotent if $r^n = 0$ for some *n* and it is idempotent if $r^2 = r$.

idempotent iff $a^2 = a$ and 2ab = b, which gives two pairs of solutions: a = b = 0 and a = 1, b = 0. Therefore the only idempotents of this ring are 0 and 1.

11. Let G be a group and K a field. In this and the next exercise, it is advised to write G multiplicatively. Consider the formal elements of the form

$$\sum_{g\in G}\lambda_g g$$

where $\lambda_g \in K$ and only finitely many of them are nonzero. Let K[G] be the set of such elements. (This is the direct sum of |G| copies of K and G is a basis).

11a. Find the elements of $\mathbf{F}_2[\mathbb{Z}/3\mathbb{Z}]$.

Write $\mathbb{Z}/3\mathbb{Z} = \{1, x, x^2\}$ (multiplicatively!). Then easily $\mathbf{F}_2[\mathbb{Z}/3\mathbb{Z}] = \mathbf{F}_2[X]/\langle X^3 - 1 \rangle$. Define +, × and scalar multiplication formally on *K*[*G*] as follows:

$$\sum_{g \in G} \lambda_g g + \sum_{g \in G} \mu_g g = \sum_{g \in G} (\mu_g + \lambda_g)g$$

$$\sum_{g \in G} \lambda_g g \times \sum_{g \in G} \mu_g g = \sum_{g \in G} \sum_{hk=g} \mu_h \lambda_k g$$

$$\lambda \sum_{g \in G} \lambda_g g = \sum_{g \in G} \lambda_g g$$

Then K[G] becomes a (not necessarily commutative) ring with 1 and also a K-vector space satisfying $\lambda(ab) = (\lambda a)b = a(\lambda b)$ (such a structure is called an **algebra** or a **K-algebra**, e.g. End_K(V) is a K-algebra).

11b. Show that $G \leq K[G]^*$.

Imbed G in K[G] by sending $h \in G$ to $\sum_{g} \delta_{g,h} g \in K[G]$ where $\delta_{g,h}$ is the Kronecker symbol. Ignoring the zeroes, this map sends in fact an element h of G to the element h of

K[G]. Clearly this imbedding is a homomorphism of G into $K[G]^*$. In fact the inverse of the element $h \in K[G]$ is h^{-1} .

11c. Find the invertible and the nilpotent elements and the idempotents of $\mathbf{F}_2[\mathbf{Z}/3\mathbf{Z}]$. Compute in $\mathbf{F}_2[X]/\langle X^3-1\rangle$. We know from 11b that 1, x and x^2 are invertible.

the element	its square	
0	0	
1	1	
x	x^2	invertible
<i>x</i> + 1	$x^{2} + 1$	
x^2	x	invertible
$x^2 + 1$	<i>x</i> + 1	
$x^2 + x$	$x^2 + x$	idempotent
$x^2 + x + 1$	$x^2 + x + 1$	idempotent
	C 1	1 (0 !)

We still have to decide the nilpotency of x + 1 and (of its square) $x^2 + 1$. But $(x + 1)^3 = x^2 + x$ which an idempotent and so cannot be nilpotent.

11d. If G is finite what is $\left(\sum_{g \in G} g\right)^2$?

If α is this element, an easy computation shows that $\alpha^2 = |G|\alpha$. Let us check it:

$$\alpha^{2} = \left(\sum_{g \in G} g\right)^{2} = \left(\sum_{g \in G} g\right) \left(\sum_{g \in G} g\right) = \left(\sum_{g \in G} g\right) \left(\sum_{h \in G} h\right) = \sum_{g \in G} \left(g \sum_{h \in G} h\right) = \sum_{g \in G} \sum_{h \in G} gh = \sum_{g \in G} \alpha = |G|\alpha.$$

11e. Show that if G has torsion elements, then K[G] has zero-divisors.

If $g \in G$ has order *n* then $(1 - g)(1 + g + ... + g^{n-1}) = 0$.

11f. Show that K[Z] is has no zero-divisors.

If *x* is the generator of \mathbb{Z} , any element of $K[\mathbb{Z}]$ can be written as a linear combination of x^n for $n \in \mathbb{Z}$. The multiplication is like in the polynomial ring.

11g. Show that the set of elements of the form $\sum_{g \in G} \lambda_g g$ where $\sum_{g \in G} \lambda_g = 0$ forms an ideal of K[G].

The set of such elements is closed under addition and multiplication by some element $g \in G$. Therefore it is an ideal.

11h. Let G be a group, K a field and $\varphi : G \to GL(V) \subseteq End_K(V)$ a group homomorphism. Show that φ extends uniquely to a K-algebra homomorphism $\varphi : K[G] \to End_K(V)$.

Clear... Just send an element $\sum_{g \in G} \lambda_g g$ of K[G] to the element $\sum_{g \in G} \lambda_g \varphi(g)$ of End_{*K*}[*G*] (there is no possible answer!). In fact any group homomorphism $\varphi : G \to H$ extends uniquely to a *K*-algebra homomorphism from *K*[*G*] into *K*[*H*].

11i. Note that, defining av as $\varphi(a)(v)$ for $a \in K[G]$ and $v \in G$, V becomes a K[G]-module via $\underline{\varphi}$.

Clear

12. The purpose of this exercise is to prove **Maschke's Theorem** that states the following: Let G be a finite group, K a field whose characteristic does not divide |G| and V a K[G]-module. Then V is completely reducible, i.e. any submodule of V has a complement in V.

12a. Show that a vector space endomorphism u of V is a K[G]-module endomorphism iff u(gv) = gu(v) for all $g \in G$ and $v \in V$.

Clear!

12b. Let W be a K[G]-submodule of V. Let U be a complement of W in V (as a vector space over K). Thus $V = W \oplus U$. Let π be the projection of V onto W according to this decomposition. Let $u : V \to V$ be defined by $u(v) = \sum_{g \in G} g\pi g^{-1}v$. Show that $u(V) \leq W$, that u is a K[G]-module homomorphism, that in case G is finite $u_{|W} = |G| \operatorname{Id}_{W}$ and that $u \circ u = |G| u$.

Since $\pi(V) \leq W$ and W is a K[G]-module, it is clear that $u(V) \leq W$.

To show that u is a K[G]-module homomorphism, it is enough to show that u(hv) = hu(v)for all $h \in G$ and $v \in V$. Let us check: $u(hv) = \sum_{g \in G} g\pi g^{-1}hv = \sum_{g \in G} hh^{-1}g\pi g^{-1}hv = h\sum_{g \in G} h^{-1}g\pi g^{-1}hv = h\sum_{g \in G} (h^{-1}g)\pi (h^{-1}g)^{-1}v = hu(v).$

For $w \in W$, since $\pi g^{-1}w = g^{-1}w$ (because $g^{-1}w \in W$), it is clear that $u_{|W} = |G| \operatorname{Id}_W$.

12c. Assume now that G is finite and that char(K) does not divide |G|. Let $\rho = \frac{1}{|G|}u$. Show

that $V = W \oplus \text{Ker}(\rho)$. (Now $\text{Ker}(\rho)$ is a K[G]-module.)

By the second question of 12b, ρ is a *G*-module homomorphism from *V* into *W*. By the third question of 12b, $\rho(V) = W$. By the last question of 12b, $\rho \circ \rho = \rho$. Thus $v - \rho(v) \in \text{Ker}(\rho)$ for any $v \in V$. Since $v = \rho(v) + (v - \rho(v))$, we get $V = \rho(V) + \text{Ker}(\rho) = W + \text{Ker}(\rho)$. If $w \in \rho(V) \cap \text{Ker}(\rho)$, then $w = \rho(v)$ for some $v \in V$ and so $w = \rho(v) = \rho^2(v) = \rho(\rho(v)) = \rho(w) = 0$ and we have $V = W \oplus \text{Ker}(\rho)$.

12d. Show that if further $\dim_{K}(V) < \infty$ then V is a direct sum of irreducible modules. (5 pts.)

If V is irreducible we are done. Otherwise, let $U \neq 0$, V be a submodule of V. By 12c, $V = U \oplus W$ for some submodules W of V. By induction on the dimension, U W are direct sum of irreducible submodules.