Linear Algebra

June 2001
Final Exam
Ali Nesin

1. Find all isomorphism types of abelian groups of order 90 and 2001.

Since $90=2 \times 3^{2} \times 5$, an abelian group G of order 90 is the direct sum of G_{2}, G_{3} and G_{5} where $G_{p}=\left\{g \in G: \mathrm{o}(g)=p^{k}\right.$ for some $\left.k\right\}$ is the p-primary part of G. Since $\left|G_{2}\right|=2, G_{2} \approx$ $\mathbb{Z} / 2 \mathbb{Z}$. Similarly $G_{5} \approx \mathbb{Z} / 5 \mathbb{Z}$. But there are two possibilities for G_{3} : Either $G_{3} \approx \mathbb{Z} / 9 \mathbb{Z}$ or G_{3} $\approx \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Thus either

$$
G \approx \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \approx \mathbb{Z} / 90 \mathbb{Z} \text { or } G \approx \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \approx \mathbb{Z} / 30 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}
$$

2. Let V be a vector space. Let $\varphi \in \mathrm{GL}_{K}(V)$ have finite order n.

2 a. What can you say about the eigenvalues of φ ?
Let λ be an eigenvalue for φ. Then there is a nonzero vector $v \in V$ such that $\varphi(v)=\lambda v$ and $v=\varphi^{n}(v)=\lambda^{n} v$. Since $v \neq 0$, this implies that $\lambda^{n}=1$. Therefore all the eigenvalues of φ are nth roots of unity.

2b. Should such a φ have to have eigenvalues?
No. Take $K=\mathbb{R}, V=\mathbb{R}^{2}$ and φ to be a rotation of $\pi / 2$ radians (90 degrees). Then $\varphi^{4}=1$ and φ has no eigenvalues.
3. Let V be a vector space over a field K of characteristic $p>0$. Let $\varphi \in \operatorname{End}_{K}(V)$.

3a. Show that $(\varphi-1)^{p^{k}}=\varphi^{p^{k}}-1$.
Proceeding by induction on k (taking p th power k times) it is enough to show for $k=1$. We just compute in the ring $\operatorname{End}_{K}(V):(\varphi-1)^{p}=\sum_{i=0}^{p}\binom{p}{i}(-1)^{i} \varphi^{p-i}=\varphi^{p}-1$ since p divides $\binom{p}{i}$ if $i \neq 0, p$ and $\operatorname{char}(K)=p$.

3b. Conclude that if φ has order p^{k} for some $k>0$, then a nonzero vector of V is fixed by φ.

Let r be the smallest natural number such that $(\varphi-1)^{r+1}=0$. Then $(\varphi-1)^{r} \neq 0$ and there is a nonzero vector $v \in V$ such that $(\varphi-1)^{r}(v) \neq 0$. If $w=(\varphi-1)^{r}(v)$, then $\varphi(w)=w$.
4. Let $V \neq 0$ be a finite dimensional vector space over an algebraically closed field K and let $A \leq \mathrm{GL}_{K}(V)$ be an abelian group. Show that the elements of A have a common nonzero eigenvector.

We proceed by induction on $\operatorname{dim}(V)$. If $\operatorname{dim}(V)=1$ this is clear. If all the elements of A act as scalars, we are done also. Assume otherwise. Let $a \in A$ be nonscalar. Since K is algebraically closed, a has an eigenvalue λ. Let V_{λ} be the λ-eigenspace of a, i.e. $V_{\lambda}=\{v \in V$: $a(v)=\lambda v\}$. Since A is abelian, for $b \in A$ and $v \in V_{\lambda}, a b(v)=b a(v)=b(\lambda v)=\lambda b(v)$. This shows that $A\left(V_{\lambda}\right)=V_{\lambda}$. Since a is nonscalar, $V_{\lambda}<V$ so that we can apply the induction hypothesis to V_{λ}. This shows that A (or the image of A in $\mathrm{GL}_{K}\left(V_{\lambda}\right)$) has a common nonzero eigenvector in V_{λ}, hence in V.
5. Let K be a field and $f \in K[X]$ a polynomial.

5a. What is the necessary and sufficient condition on ffor $K[X] /\langle f\rangle$ to be a pid?
Any ideal of $K[X] /\langle f\rangle$ is the quotient of an ideal I of $K[X]$ containing f, therefore any ideal of $K[X] /\langle f\rangle$ is principle. But this is not enough to make $K[X] /\langle f\rangle$ a pid (principle ideal domain). Further, $K[X] /\langle f\rangle$ should have no nonzero zerodivisors. This means that either $f=0$ or is irreducible.

5b. And in that case what are the invertible elements of the ring $K[X] /\langle f\rangle$?
If $f=0$, then the invertible elements are just the constants. If f is irreducible, then $K[X] /\langle f\rangle$ is a field and all its nonzero elements are invertible.
6. Let R be a ring and M and N left R-modules.

6a. Is $\operatorname{Hom}_{R}(M, N)$ naturally an R-module?
No, not always. In general, one needs R to be commutative for this because if $r \in R$ and f $\in \operatorname{Hom}_{R}(M, N)$, for $r f$ to be in $\operatorname{Hom}_{R}(M, N)$, one needs in particular $r s f(m)=r(f(s m))=$ $(r f)(s m)=s((r f)(m))=\operatorname{srf}(m)$ for all $s \in R$ and $m \in M$, i.e. $(r s-s r) f(M)=0$ for all $s \in R$. If R is not commutative, this may not be the case.

6 b . Show that $\operatorname{End}_{R}(M)$ is a (not necessarily commutative) ring with identity Id_{M}.
$\operatorname{End}_{R}(M)$ is a ring under addition and composition of maps as one can show easily.
6c. What is the necessary and sufficient condition for the submodule $R \operatorname{Id}_{M}$ of $\operatorname{End}_{R}(M)$ to be naturally isomorphic to R ?
(Note that here we view R as a left-module over itself). The map $r \mapsto r \operatorname{Id}_{M}$ is an R-module surjection. This map is one-to-one iff $r M \neq 0$ for any $r \in R \backslash\{0\}$, i.e. if $\operatorname{ann}_{R}(M)=0$.
7. Let R be a ring and M a left R-module generated by one element.

7 . Show that $M \approx R / I$ (as left R-modules) for some left ideal I of R.
Let $m \in M$ be a generator. Then the map $r \mapsto r m$ is a surjective left module homomorphism from R into M. If I is the kernel of this homomorphism $\left(I=\operatorname{ann}_{R}(m)\right), R / I \approx$ M.

7b. Show that M is irreducible ${ }^{1}$ iff I is a maximal left ideal of R.
Clear from above.
8. (Schur's Lemma) Let R be a ring and M and N be two irreducible left R-modules.

8a. Show that any homomorphism $\varphi: M \rightarrow N$ is either 0 or an isomorphism.
Assume $\varphi \neq 0$. Then since $\varphi(M) \leq N$ and $\operatorname{Ker}(\varphi) \leq M$ and since M and N are irreducible modules, $\varphi(M)=N$ and $\operatorname{Ker}(\varphi)=0$, i.e. φ is an isomorphism.

8 b. Show that $\operatorname{End}_{R}(M)$ is a division ring.
Clear from above.
9. Assume V is a vector space of finite dimension over a field K. Let $A \in \operatorname{End}_{K}(V)$.

9a. Show that the subring $K[A]$ of $\operatorname{End}_{K}(V)$ generated by A and the scalar multiplications $\lambda \operatorname{Id}_{V}($ for $\lambda \in K)$ is isomorphic to $K[X] /\langle f\rangle$ for some polynomial $f \in K[X]$.

Clearly $K[A]=\left\{\lambda_{0}+\lambda_{1} A+\ldots+\lambda_{k} A^{k}: k \in \mathbf{N}, \lambda_{0}, \ldots, \lambda_{k} \in K\right\}$, i.e. $K[A]$ is the image of the evaluation map (which is a ring homomorphism from $K[X]$ into $\operatorname{End}_{K}(V)$) that evaluates X at A. Thus if $\langle f\rangle$ is the kernel of this homomorphism, then $K[A] \approx K[X] /\langle f\rangle$. Note also that this is

[^0]also a vector isomorphism and that f is a polynomial of minimum degree such that $f(A)=0$. Since K is a field, one can take f to be monic.

9b. Can you bound the degree of f in terms of $\operatorname{dim}_{K}(V)$?
Yes: $\operatorname{deg}(f)=\operatorname{dim}_{K}(K[X] /\langle f\rangle)=\operatorname{dim}_{K} K[A] \leq \operatorname{dim}_{K}\left(\operatorname{End}_{K}(V)\right)=\operatorname{dim}_{K}(V)^{2}$.
9b. Find f when

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
K=\mathbf{F}_{7} \text { and } A=\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

In the first case $f(X)=(X-1)^{2}$. In the second case the answer depends on a. If $a=1$ then $f(X)=X-1$. If $a \neq 1$, then $f(X)=(X-1)(X-a)$.
10. \quad Consider $\mathbb{Z} \times \mathbb{Z}$ as a group (i.e. as a \mathbf{Z}-module). $\operatorname{For} A \in \operatorname{End} \mathbb{Z}(\mathbb{Z} \times \mathbb{Z})$ consider the subring $\mathbb{Z}[A]$ of $\operatorname{End} \mathbb{Z}(\mathbb{Z} \times \mathbb{Z})$ generated by A.

10 a . Find the number of minimal generators of $\mathbb{Z}[A]$ as a \mathbb{Z}-module when

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

As in number $9, \mathbb{Z}[A] \approx \mathbb{Z}[X] / I$ where $I=\{f \in \mathbb{Z}[X]: f(A)=0\}$. But this time, we cannot say right away that I is generated by some polynomial since $\mathbb{Z}[X]$ is not a pid. (However $\mathbb{Z}[X]$ is a Noetherian ring by Hilbert's Basis Theorem from Basic Algebra, but we do not really need this result, and I is generated by finitely many polynomials). We will work with $\mathbb{Z}[X] / I$ rather that with $\mathbb{Z}[A]$. Note that

$$
\begin{aligned}
\mathrm{Id} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
A^{2} & =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Thus no nonzero polynomial of degree ≤ 1 is in I and $a+b X+c X^{2} \in A$ iff $a+b+c=b+$ $2 c=0$ iff $b=-2 a=-2 c$. Taking $a=1$, we see that $1-2 X+X^{2} \in I$. This shows that $I=\langle 1-$ $\left.2 X+X^{2}\right\rangle$ because this polynomial is monic and the division algorithm still works in $\mathbb{Z}[X]$. Thus the \mathbb{Z}-module $\mathbb{Z}[A]$ is generated by 1 and A.

10b. Find the invertible and nilpotent elements of $\mathbb{Z}[A]$ and its idempotents ${ }^{2}$.
Change variables. Set $Y=X-1$. Then $\mathbb{Z}[X] /\left\langle 1-2 X+X^{2}\right\rangle=\mathbb{Z}[Y] / Y^{2}$. Compute in this latter ring. Let y be the image of Y in $\mathbb{Z}[Y] / Y^{2}$. An element of $\mathbb{Z}[Y] / Y^{2}$ can be uniquely written as $a+b y$. Since $(a+b y)^{n}=a^{n}+$ naby, the element $a+b y$ is nilpotent iff $a=0$. Therefore only the elements of the form by are nilpotent and these correspond to the elements $b(x-1)$ of $\mathbb{Z}[X] /\left\langle 1-2 X+X^{2}\right\rangle$, i.e. to the elements $b(A-1)$ of $\mathbb{Z}[A]$. Taking $n=2$, we see that $a+b y$ is

[^1]idempotent iff $a^{2}=a$ and $2 a b=b$, which gives two pairs of solutions: $a=b=0$ and $a=1, b=$ 0 . Therefore the only idempotents of this ring are 0 and 1 .
11. Let G be a group and K a field. In this and the next exercise, it is advised to write G multiplicatively. Consider the formal elements of the form
$$
\sum_{g \in G} \lambda_{g} g
$$
where $\lambda_{g} \in K$ and only finitely many of them are nonzero. Let $K[G]$ be the set of such elements. (This is the direct sum of $|G|$ copies of K and G is a basis).

11a. Find the elements of $\mathbf{F}_{2}[\mathbb{Z} / 3 \mathbb{Z}]$.
Write $\mathbb{Z} / 3 \mathbb{Z}=\left\{1, x, x^{2}\right\}$ (multiplicatively!). Then easily $\mathbf{F}_{2}[\mathbb{Z} / 3 \mathbb{Z}]=\mathbf{F}_{2}[X] /\left\langle X^{3}-1\right\rangle$.
Define,$+ \times$ and scalar multiplication formally on $K[G]$ as follows:

$$
\begin{gathered}
\left(\sum_{g \in G} \lambda_{g} g\right)+\left(\sum_{g \in G} \mu_{g} g\right)=\sum_{g \in G}\left(\mu_{g}+\lambda_{g}\right) g \\
\left(\sum_{g \in G} \lambda_{g} g\right) \times\left(\sum_{g \in G} \mu_{g} g\right)=\sum_{g \in G}\left(\sum_{h k=g} \mu_{h} \lambda_{k}\right) g \\
\lambda\left(\sum_{g \in G} \lambda_{g} g\right)=\sum_{g \in G} \lambda \lambda_{g} g
\end{gathered}
$$

Then $K[G]$ becomes a (not necessarily commutative) ring with 1 and also a K-vector space satisfying $\lambda(a b)=(\lambda a) b=a(\lambda b)$ (such a structure is called an algebra or a \boldsymbol{K}-algebra, e.g. $\operatorname{End}_{K}(V)$ is a K-algebra).

11b. Show that $G \leq K[G]^{*}$.
Imbed G in $K[G]$ by sending $h \in G$ to $\sum_{g} \delta_{g, h} g \in K[G]$ where $\delta_{g, h}$ is the Kronecker symbol. Ignoring the zeroes, this map sends in fact an element h of G to the element h of $K[G]$. Clearly this imbedding is a homomorphism of G into $K[G]^{*}$. In fact the inverse of the element $h \in K[G]$ is h^{-1}.

11c. Find the invertible and the nilpotent elements and the idempotents of $\mathbf{F}_{2}[\mathbf{Z} / 3 \mathbf{Z}]$.
Compute in $\mathbf{F}_{2}[X] /\left\langle X^{3}-1\right\rangle$. We know from 11b that $1, x$ and x^{2} are invertible.

the element	its square	
0	0	
1	1	
x	x^{2}	invertible
$x+1$	$x^{2}+1$	
x^{2}	x	invertible
$x^{2}+1$	$x+1$	
$x^{2}+x$	$x^{2}+x$	idempotent
$x^{2}+x+1$	$x^{2}+x+1$	idempotent

We still have to decide the nilpotency of $x+1$ and (of its square) $x^{2}+1$. But $(x+1)^{3}=x^{2}$ $+x$ which an idempotent and so cannot be nilpotent.

11d. If G is finite what is $\left(\sum_{g \in G} g\right)^{2}$?
If α is this element, an easy computation shows that $\alpha^{2}=|G| \alpha$. Let us check it:
$\alpha^{2}=\left(\sum_{g \in G} g\right)^{2}=\left(\sum_{g \in G} g\right)\left(\sum_{g \in G} g\right)=\left(\sum_{g \in G} g\right)\left(\sum_{h \in G} h\right)=\sum_{g \in G}\left(g \sum_{h \in G} h\right)=$ $\sum_{g \in G} \sum_{h \in G} g h=\sum_{g \in G} \alpha=|G| \alpha$.

11 e . Show that if G has torsion elements, then $K[G]$ has zero-divisors.
If $g \in G$ has order n then $(1-g)\left(1+g+\ldots+g^{n-1}\right)=0$.
11f. Show that $K[\mathbf{Z}]$ is has no zero-divisors.

If x is the generator of \mathbb{Z}, any element of $K[\mathbb{Z}]$ can be written as a linear combination of x^{n} for $n \in \mathbb{Z}$. The multiplication is like in the polynomial ring.

11 g . Show that the set of elements of the form $\sum_{g \in G} \lambda_{g} g$ where $\sum_{g \in G} \lambda_{g}=0$ forms an ideal of $K[G]$.

The set of such elements is closed under addition and multiplication by some eleemnt $g \in$ G. Therefore it is an ideal.

11h. Let G be a group, K a field and $\varphi: G \rightarrow \mathrm{GL}(V) \subseteq \operatorname{End}_{K}(V)$ a group homomorphism. Show that φ extends uniquely to a K-algebra homomorphism $\varphi: K[G] \rightarrow \operatorname{End}_{K}(V)$.

Clear... Just send an element $\sum_{g \in G} \lambda_{g} g$ of $K[G]$ to the element $\sum_{g \in G} \lambda_{g} \varphi(g)$ of $\operatorname{End}_{K}[G]$ (there is no possible answer!). In fact any group homomorphism $\varphi: G \rightarrow H$ extends uniquely to a K-algebra homomorphism from $K[G]$ into $K[H]$.

11i. Note that, defining av as $\varphi(a)(v)$ for $a \in K[G]$ and $v \in G, V$ becomes a $K[G]$-module via φ.

Clear
12. The purpose of this exercise is to prove Maschke's Theorem that states the following: Let G be a finite group, K a field whose characteristic does not divide $|G|$ and V a $K[G]$-module. Then V is completely reducible, i.e. any submodule of V has a complement in V.

12a. Show that a vector space endomorphism u of V is a $K[G]$-module endomorphism iff $u(g v)=g u(v)$ for all $g \in G$ and $v \in V$.

Clear!
12b. Let W be a $K[G]$-submodule of V. Let U be a complement of W in V (as a vector space over K). Thus $V=W \oplus U$. Let π be the projection of V onto W according to this decomposition. Let $u: V \rightarrow V$ be defined by $u(v)=\sum_{g \in G} g \pi_{g}{ }^{-1} v$. Show that $u(V) \leq W$, that u is a $K[G]$-module homomorphism, that in case G is finite $u_{\mid W}=|G| \operatorname{Id}_{W}$ and that $u \circ u=|G|$ u.

Since $\pi(V) \leq W$ and W is a $K[G]$-module, it is clear that $u(V) \leq W$.
To show that u is a $K[G]$-module homomorphism, it is enough to show that $u(h v)=h u(v)$ for all $h \in G$ and $v \in V$. Let us check: $u(h v)=\sum_{g \in G} g \pi g^{-1} h v=\sum_{g \in G} h h^{-1} g \pi g^{-1} h v=$ $h \sum_{g \in G} h^{-1} g \pi g^{-1} h v=h \sum_{g \in G}\left(h^{-1} g\right) \pi\left(h^{-1} g\right)^{-1} v=h u(v)$.

For $w \in W$, since $\pi g^{-1} w=g^{-1} w$ (because $g^{-1} w \in W$), it is clear that $u_{\mid W}=|G| \mathrm{Id}_{W}$.
12c. Assume now that G is finite and that $\operatorname{char}(K)$ does not divide $|G|$. Let $\rho=\frac{1}{|G|}$ u. Show that $V=W \oplus \operatorname{Ker}(\rho)$. (Now $\operatorname{Ker}(\rho)$ is a $K[G]$-module.)

By the second question of $12 \mathrm{~b}, \rho$ is a G-module homomorphism from V into W. By the third qyestion of $12 \mathrm{~b}, \rho(V)=W$. By the last question of $12 \mathrm{~b}, \rho \circ \rho=\rho$. Thus $v-\rho(v) \in$ $\operatorname{Ker}(\rho)$ for any $v \in V$. Since $v=\rho(v)+(v-\rho(v))$, we get $V=\rho(V)+\operatorname{Ker}(\rho)=W+\operatorname{Ker}(\rho)$. If w $\in \rho(V) \cap \operatorname{Ker}(\rho)$, then $w=\rho(v)$ for some $v \in V$ and so $w=\rho(v)=\rho^{2}(v)=\rho(\rho(v))=\rho(w)=0$ and we have $V=W \oplus \operatorname{Ker}(\rho)$.

12d. Show that if further $\operatorname{dim}_{K}(V)<\infty$ then V is a direct sum of irreducible modules. (5 pts.)

If V is irreducible we are done. Otherwise, let $U \neq 0, V$ be a submodule of V. By 12c, $V=$ $U \oplus W$ for some submodules W of V. By induction on the dimension, $U W$ are direct sum of irreducible submodules.

[^0]: ${ }^{1}$ A module is called irreducible if its only submodules are 0 and itself.

[^1]: ${ }^{2}$ An element r of a ring is nilpotent if $r^{n}=0$ for some n and it is idempotent if $r^{2}=r$.

