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1. Find all isomorphism types of abelian groups of order 90 and 2001. 

Since 90 = 2 × 3
2
 × 5, an abelian group G of order 90 is the direct sum of G2, G3 and G5 

where Gp = {g ∈ G : o(g) = p
k
 for some k} is the p-primary part of G. Since |G2| = 2, G2 ≈ 

�/2�. Similarly G5 ≈ �/5�. But there are two possibilities for G3: Either G3 ≈ �/9� or G3 

≈ �/3� × �/3�. Thus either 

G ≈ �/2� × �/9� × �/5� ≈ �/90� or G ≈ �/2� × �/3� × �/3� × �/5� ≈ �/30� × �/3�. 

 

2. Let V be a vector space. Let ϕ ∈ GLK(V) have finite order n.  

2a. What can you say about the eigenvalues of ϕ?  

Let λ be an eigenvalue for ϕ. Then there is a nonzero vector v ∈ V such that ϕ(v) = λv and 

v = ϕn
(v) = λn

v. Since v ≠ 0, this implies that λn
 = 1. Therefore all the eigenvalues of ϕ are nth 

roots of unity. 

2b. Should such a ϕ have to have eigenvalues? 

No. Take K = �, V = �
2
 and ϕ to be a rotation of π/2 radians (90 degrees). Then ϕ4

 = 1 

and ϕ has no eigenvalues. 

 

3. Let V be a vector space over a field K of characteristic p > 0. Let ϕ ∈ EndK(V).  

3a. Show that .1)1( −=−
kk pp ϕϕ  

Proceeding by induction on k (taking pth power k times) it is enough to show for k = 1. 

We just compute in the ring EndK(V): (ϕ − 1)
p
 = ∑
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if i ≠ 0, p and char(K) = p. 

3b. Conclude that if ϕ has order p
k
 for some k > 0, then a nonzero vector of V is fixed by 

ϕ.  

Let r be the smallest natural number such that (ϕ − 1)
r+1

 = 0. Then (ϕ − 1)
r
 ≠ 0 and there is 

a nonzero vector v ∈ V such that (ϕ − 1)
r
(v) ≠ 0. If w = (ϕ − 1)

r
(v), then ϕ(w) = w. 

 

4. Let V ≠ 0 be a finite dimensional vector space over an algebraically closed field K 

and let A ≤ GLK(V) be an abelian group. Show that the elements of A have a common nonzero 

eigenvector.  

We proceed by induction on dim(V). If dim(V) = 1 this is clear. If all the elements of A act 

as scalars, we are done also. Assume otherwise. Let a ∈ A be nonscalar. Since K is 

algebraically closed, a has an eigenvalue λ. Let Vλ be the λ-eigenspace of a, i.e. Vλ = {v ∈ V : 

a(v) = λv}. Since A is abelian, for b ∈ A and v ∈ Vλ, ab(v) = ba(v) = b(λv) = λb(v). This 

shows that A(Vλ) = Vλ. Since a is nonscalar, Vλ < V so that we can apply the induction 

hypothesis to Vλ. This shows that A (or the image of A in GLK(Vλ)) has a common nonzero 

eigenvector in Vλ, hence in V. 



 

5. Let K be a field and f ∈ K[X] a polynomial.  

5a. What is the necessary and sufficient condition on f for K[X]/〈f〉 to be a pid? 

Any ideal of K[X]/〈f〉 is the quotient of an ideal I of K[X] containing f, therefore any ideal 

of K[X]/〈f〉 is principle. But this is not enough to make K[X]/〈f〉 a pid (principle ideal domain). 

Further, K[X]/〈f〉 should have no nonzero zerodivisors. This means that either f = 0 or is 

irreducible. 

5b. And in that case what are the invertible elements of the ring K[X]/〈f〉?  

If f = 0, then the invertible elements are just the constants. If f is irreducible, then K[X]/〈f〉 
is a field and all its nonzero elements are invertible. 

 

6. Let R be a ring and M and N left R-modules.  

6a. Is HomR(M, N) naturally an R-module? 

No, not always. In general, one needs R to be commutative for this because if r ∈ R and f 

∈ HomR(M, N), for rf to be in HomR(M, N), one needs in particular rsf(m) = r(f(sm)) = 

(rf)(sm) = s((rf)(m)) = srf(m) for all s ∈ R and m ∈ M, i.e. (rs − sr)f(M) = 0 for all s ∈ R. If R 

is not commutative, this may not be the case. 

6b. Show that EndR(M) is a (not necessarily commutative) ring with identity IdM. 

EndR(M) is a ring under addition and composition of maps as one can show easily. 

 

6c. What is the necessary and sufficient condition for the submodule RIdM of EndR(M) to 

be naturally isomorphic to R? 

(Note that here we view R as a left-module over itself). The map r ↦ rIdM is an R-module 

surjection. This map is one-to-one iff rM ≠ 0 for any r ∈ R \ {0}, i.e. if annR(M) = 0. 

 

7. Let R be a ring and M a left R-module generated by one element.  

7a. Show that M ≈ R/I (as left R-modules) for some left ideal I of R. 

Let m ∈ M be a generator. Then the map r ↦ rm is a surjective left module 

homomorphism from R into M. If I is the kernel of this homomorphism (I = annR(m)), R/I ≈ 

M. 

7b. Show that M is irreducible
1
 iff I is a maximal left ideal of R.  

Clear from above. 

 

8. (Schur’s Lemma) Let R be a ring and M and N be two irreducible left R-modules.  

8a. Show that any homomorphism ϕ : M → N is either 0 or an isomorphism. 

Assume ϕ ≠ 0. Then since ϕ(M) ≤ N and Ker(ϕ) ≤ M and since M and N are irreducible 

modules, ϕ(M) = N and Ker(ϕ) = 0, i.e. ϕ is an isomorphism. 

8b. Show that EndR(M) is a division ring. 

Clear from above. 

 

9. Assume V is a vector space of finite dimension over a field K. Let A ∈ EndK(V).  

9a. Show that the subring K[A] of EndK(V) generated by A and the scalar multiplications 

λIdV (for λ ∈ K) is isomorphic to K[X]/〈f〉 for some polynomial f ∈ K[X]. 

Clearly K[A] = {λ0 + λ1A + ... + λkA
k
 : k ∈ N, λ0, ..., λk ∈ K}, i.e. K[A] is the image of the 

evaluation map (which is a ring homomorphism from K[X] into EndK(V)) that evaluates X at 

A. Thus if 〈f〉 is the kernel of this homomorphism, then K[A] ≈ K[X]/〈f〉. Note also that this is 

                                                 
1
 A module is called irreducible if its only submodules are 0 and itself. 



also a vector isomorphism and that f is a polynomial of minimum degree such that f(A) = 0. 

Since K is a field, one can take f to be monic. 

9b. Can you bound the degree of f in terms of dimK(V)? 

Yes: deg(f) = dimK(K[X]/〈f〉) = dimK K[A] ≤ dimK(EndK(V)) = dimK(V)
2
. 

9b. Find f when 
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K = F7 and A = 
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In the first case f(X) = (X − 1)
2
. In the second case the answer depends on a. If a = 1 then 

f(X) = X − 1. If a ≠ 1, then f(X) = (X − 1)(X − a). 

 

10. Consider � × � as a group (i.e. as a Z-module). For A ∈ End�(� × �) consider the 

subring �[A] of  End�(� × �) generated by A.  

10a. Find the number of minimal generators of �[A] as a �-module when  
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As in number 9, �[A] ≈ �[X]/I where I = {f ∈ �[X] : f(A) = 0}. But this time, we cannot 

say right away that I is generated by some polynomial since �[X] is not a pid. (However �[X] 

is a Noetherian ring by Hilbert’s Basis Theorem from Basic Algebra, but we do not really 

need this result, and I is generated by finitely many polynomials). We will work with �[X]/I 

rather that with �[A]. Note that  
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Thus no nonzero polynomial of degree ≤ 1 is in I and a + bX + cX
2
 ∈ A iff a + b + c = b + 

2c = 0 iff b = −2a = −2c. Taking a = 1, we see that 1 − 2X + X 
2
 ∈ I. This shows that I = 〈1 − 

2X + X
2〉 because this polynomial is monic and the division algorithm still works in �[X]. 

Thus the �-module �[A] is generated by 1 and A. 

10b. Find the invertible and nilpotent elements of �[A] and its idempotents
2
. 

Change variables. Set Y = X − 1. Then �[X]/〈1 − 2X + X
2〉 = �[Y]/Y 

2
. Compute in this 

latter ring. Let y be the image of Y in �[Y]/Y 
2
. An element of �[Y]/Y 

2
 can be uniquely written 

as a + by. Since (a + by)
n
 = a

n
 + naby, the element a + by is nilpotent iff a = 0. Therefore only 

the elements of the form by are nilpotent and these correspond to the elements b(x − 1) of 

�[X]/〈1 − 2X + X
2〉, i.e. to the elements b(A − 1) of �[A]. Taking n = 2, we see that a + by is 

                                                 
2
 An element r of a ring is nilpotent if r

n
 = 0 for some n and it is idempotent if r

2
 = r. 



idempotent iff a
2
 = a and 2ab = b, which gives two pairs of solutions: a = b = 0 and a = 1, b = 

0. Therefore the only idempotents of this ring are 0 and 1. 

 

11. Let G be a group and K a field. In this and the next exercise, it is advised to write 

G multiplicatively. Consider the formal elements of the form 

∑ ∈Gg g gλ  

where λg ∈ K and only finitely many of them are nonzero. Let K[G] be the set of such 

elements. (This is the direct sum of |G| copies of K and G is a basis). 

11a. Find the elements of F2[�/3�].  

Write �/3� = {1, x, x
2
} (multiplicatively!). Then easily F2[�/3�] = F2[X]/〈X 

3−1〉. 
Define +, × and scalar multiplication formally on K[G] as follows: 

( ) ( ) ∑∑∑ ∈∈∈
+=+

Gg ggGg gGg g ggg )( λµµλ  

( ) ( ) ( )∑ ∑∑∑ ∈ =∈∈
=×

Gg ghk khGg gGg g ggg λµµλ  

( ) ∑∑ ∈∈
=

Gg gGg g gg λλλλ  

Then K[G] becomes a (not necessarily commutative) ring with 1 and also a K-vector space 

satisfying λ(ab) = (λa)b = a(λb) (such a structure is called an algebra or a K-algebra, e.g. 

EndK(V) is a K-algebra).  

11b. Show that G ≤ K[G]
*
. 

Imbed G in K[G] by sending h ∈ G to g
g hg∑ ,δ ∈ K[G] where δg,h is the Kronecker 

symbol. Ignoring the zeroes, this map sends in fact an element h of G to the element h of 

K[G]. Clearly this imbedding is a homomorphism of G into K[G]
*
. In fact the inverse of the 

element h ∈ K[G] is h
−1

. 

11c. Find the invertible and the nilpotent elements and the idempotents of F2[Z/3Z]. 

Compute in F2[X]/〈X 
3−1〉. We know from 11b that 1, x and x

2
 are invertible. 

the element its square  

0 0  

1 1  

x x
2 

invertible 

x + 1 x
2
 + 1  

x
2
  x invertible 

x
2
 + 1 x + 1  

x
2
 + x x

2
 + x idempotent 

x
2
 + x + 1 x

2
 + x + 1 idempotent 

We still have to decide the nilpotency of x + 1 and (of its square) x
2
 + 1. But (x + 1)

3
 = x

2
 

+ x which an idempotent and so cannot be nilpotent. 

11d. If G is finite what is ( )2∑ ∈Gg
g ?  

If α is this element, an easy computation shows that α2
 = |G|α. Let us check it:  

α2
 = ( )2∑ ∈Gg

g = ( )∑ ∈Gg
g ( )∑ ∈Gg

g  = ( )∑ ∈Gg
g ( )∑ ∈Gh

h  = ( )∑ ∑∈ ∈Gg Gh
hg  = 

∑ ∑∈ ∈Gg Gh
gh  = ∑ ∈Gg

α  = |G|α. 

11e. Show that if G has torsion elements, then K[G] has zero-divisors.  

If g ∈G has order n then (1 − g)(1 + g + ... + g
n−1

) = 0. 

11f. Show that K[Z] is has no zero-divisors. 



If x is the generator of �, any element of K[�] can be written as a linear combination of x
n
 

for n ∈ �. The multiplication is like in the polynomial ring. 

11g. Show that the set of elements of the form  ∑ ∈Gg g gλ where ∑ ∈
=

Gg g 0λ  forms 

an ideal of K[G].  

The set of such elements is closed under addition and multiplication by some eleemnt g ∈ 

G. Therefore it is an ideal. 

11h. Let G be a group, K a field and ϕ : G → GL(V) ⊆ EndK(V) a group homomorphism. 

Show that ϕ extends uniquely to a K-algebra homomorphism ϕ : K[G] → EndK(V). 

Clear... Just send an element ∑ ∈Gg g gλ  of K[G] to the element ∑ ∈Gg g g)(ϕλ of 

EndK[G] (there is no possible answer!). In fact any group homomorphism ϕ : G → H extends 

uniquely to a K-algebra homomorphism from K[G] into K[H]. 

11i. Note that, defining av as ϕ(a)(v) for a ∈ K[G] and v ∈ G, V becomes a K[G]-module 

via ϕ . 

Clear 

 

12. The purpose of this exercise is to prove Maschke’s Theorem that states the 

following: Let G be a finite group, K a field whose characteristic does not divide |G| and V a 

K[G]-module. Then V is completely reducible, i.e. any submodule of V has a complement in V. 

12a. Show that a vector space endomorphism u of V is a K[G]-module endomorphism iff 

u(gv) = gu(v) for all g ∈ G and v ∈ V. 

Clear! 

12b. Let W be a K[G]-submodule of V. Let U be a complement of W in V (as a vector 

space over K). Thus V = W ⊕ U. Let π be the projection of V onto W according to this 

decomposition. Let u : V → V be defined by u(v) = ∑ ∈
−

Gg
vgg

1π . Show that u(V) ≤ W, that 

u is a K[G]-module homomorphism, that in case G is finite u|W = |G| IdW  and that u ◦ u = |G| 
u. 

Since π(V) ≤ W and W is a K[G]-module, it is clear that u(V) ≤ W.  

To show that u is a K[G]-module homomorphism, it is enough to show that u(hv) = hu(v) 

for all h ∈ G and v ∈ V. Let us check: u(hv) = ∑ ∈
−

Gg
hvgg

1π  = ∑ ∈
−−

Gg
hvgghh

11 π  = 

∑ ∈
−−

Gg
hvgghh

11 π  = ∑ ∈
−−−

Gg
vghghh

111 )()( π  = hu(v). 

For w ∈ W, since πg
−1

w = g
−1

w (because g
−1

w ∈ W), it is clear that u|W = |G| IdW .
 

12c. Assume now that G is finite and that char(K) does not divide |G|. Let ρ  = u
G

1
. Show 

that V = W ⊕ Ker(ρ). (Now Ker(ρ) is a K[G]-module.) 

By the second question of 12b, ρ is a G-module homomorphism from V into W. By the 

third qyestion of 12b, ρ(V) = W. By the last question of 12b, ρ ◦ ρ = ρ. Thus v − ρ(v) ∈ 

Ker(ρ) for any v ∈ V. Since v = ρ(v) + (v − ρ(v)), we get V = ρ(V) + Ker(ρ) = W + Ker(ρ). If w 

∈ ρ(V) ∩ Ker(ρ), then w = ρ(v) for some v ∈ V and so w = ρ(v) = ρ2
(v) = ρ(ρ(v)) = ρ(w) = 0 

and we have V = W ⊕ Ker(ρ). 

12d. Show that if further dimK(V) < ∞ then V is a direct sum of irreducible modules. (5 

pts.) 



If V is irreducible we are done. Otherwise, let U ≠ 0, V be a submodule of V. By 12c, V = 

U ⊕ W for some submodules W of V. By induction on the dimension, U W are direct sum of 

irreducible submodules. 


