## Math 232

Midterm
May 2001
Ali Nesin
Throughout $K$ denotes a field.

1. Compute the determinent

$$
\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} & a_{n} \\
-1 & x & 0 & \cdots & 0 & 0 \\
0 & -1 & x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & 0 \\
0 & 0 & 0 & \cdots & x & 0 \\
0 & 0 & 0 & \cdots & -1 & x
\end{array}\right]
$$

2. Let $f: K^{3} \rightarrow K^{4}$ be defined by $f(x, y, z)=(x-y, 0,2 x-2 y, x-y-2 z)$.

2a. Find a basis of $\operatorname{Im}(f)$.
2b. Find a basis of $\operatorname{Ker}(f)$.
3. Let $W=\{(x-y, x-y+z, z, 0,2 z): x, y, z \in K\}$. Find a basis of the quotient space $K^{5} / W$.
4. What is the dimension of the intersection of two distinct subspaces of dimension $n-1$ of a vector space of dimension $n$ ?
5. Let $f(X)=a_{\mathrm{o}}+a_{1} X+\ldots+a_{n} X^{n} \in K[X]$ where $a_{n} \neq 0$ and let $V=K[X] /(f)$. We consider $V$ as a vector space over $K$.

5a. Find a basis of $V$.
5b. Multiplication by $X$ gives rise to a linear map, say $\varphi$, on $V$. Write the matrix of this map with respect to the basis you found above.
$\mathbf{5 c}$. Compute the determinent of the matrix above. When is it 0 ?
5d. What is the kernel of $\varphi$ ?
6. If $A=\left(a_{i j}\right)_{i j}$ is an $n \times n$ square matrix $K$, the trace of $A, \operatorname{tr}(A)$, is defined to be $\sum_{i=1}^{n} a_{i i}$.

6a. Show that $\operatorname{tr}$ is a linear map from the vector space of $n \times n$ matrices over $K$ into $K$.
$\mathbf{6 b}$. What is the dimension of the kernel of tr ?

7a. Let $f: K^{n} \rightarrow K$ be a linear map. Show that there are $a_{1}, a_{2}, \ldots, a_{n} \in K$ such that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}$.

7b. Conclude that every subspace of dimension $n-1$ of $K^{n}$ is of the form

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}: a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0\right\}
$$

for some $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all 0 .
8. Call the 1-dimensional subspaces of $K^{3}$ points, and the set of 2-dimensional subspaces of $K$. We will say that a point $P$ is on the line $\ell$ if $P \subseteq \ell$. Show that

8a. Through any two points a unique line passes.
$\mathbf{8 b}$. Two distinct lines intersect in a unique point.
8c. If $K=\mathbf{F}_{q}$, how many lines and points does this geometry have?
8d. Show that, whatever the field is, there is a (quite natural) bijection between the set of lines and points of this geometry. (Hint: see \#7b).

8e. Draw the points and the lines of this geometry if $K=\mathbf{F}_{2}$.

