Math 232
(Linear Algebra)
Midterm 2 for CS majors
Şubat 1999
Ali Nesin

I. Are the following sets vector spaces over \(\mathbb{R} \)?

a. \(A = \{ f : \mathbb{R} \to \mathbb{R} : f(x) \geq 0 \text{ for all } x \in \mathbb{R} \} \)

b. \(B = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = 0 \text{ for all } x \geq 0 \} \)

c. \(C = \{ (x, y, z) \in \mathbb{R}^3 : x + y + z \in \mathbb{Z} \} \)

d. \(D = \{ (x, x^2) \in \mathbb{R}^2 : x \in \mathbb{R} \} \)

Justify your answers.

II. Find a basis of the following vector space:
\(\{ (2z, x - y, x - y, z + t, z - t, u + x - y) : (x, y, z, t, u) \in \mathbb{R}^6 : x + y + z + t + u = 0 \} \).

III. Find the general form of a vector of the subspace of \(\mathbb{R}^4 \) generated by the vectors
\(v_1 = (1, 2, 3, 1) \)
\(v_2 = (1, 2, 3, 2) \)
\(v_3 = (1, 2, 3, -1) \)

IV. Let \(f : \mathbb{R}^3 \to \mathbb{R}^4 \) be defined by \(f(x, y, z) = (x - y, 0, 2x - 2y, x - y - 2z) \).

IV.1. Show that \(f \) is a linear map.

IV.2. Find a basis of \(\text{Im}(f) \).

IV.3. Find a basis of \(\text{Ker}(f) \).

V. Let \(W = \{ (x - y, x - y + z, z, 0, 2z) : x, y, z \in \mathbb{R} \} \). \(W \) is a subspace of \(\mathbb{R}^5 \). Find a basis of the quotient space \(\mathbb{R}^5/W \).

VI. Let \(f : V \to W \) be a linear map between two vector spaces \(V \) and \(W \).

VI.1. Show that if \(v_1, \ldots, v_n \in V \) are such that \(f(v_1), \ldots, f(v_n) \) are linearly independent, then \(v_1, \ldots, v_n \) are also linearly independent.

VI.2. Conclude that \(\dim V \geq \dim f(V) \).