Math 232 (Linear Algebra)

Midterm 2 for CS majors Şubat 1999 Ali Nesin

I. Are the following sets vector spaces over \mathbb{R} ?

a.
$$A = \{f : \mathbb{R} \to \mathbb{R} : f(x) \ge 0 \text{ for all } x \in \mathbb{R} \}$$

b.
$$B = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = 0 \text{ for all } x \ge 0 \}$$

c.
$$C = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \in \mathbb{Z}\}$$

d.
$$D = \{(x, x^2) \in \mathbb{R}^2 : x \in \mathbb{R}\}$$

Justify your answers.

II. Find a basis of the following vector space:

$$\{(2z, x-y, x-y, z+t, z-t, u+x-y) \in \mathbb{R}^6 : x+y+z+t+u=0\}.$$

III. Find the general form of a vector of the subspace of \mathbb{R}^4 generated by the vectors

$$v_1 = (1, 2, 3, 1)$$

$$v_2 = (1, 2, 3, 2)$$

$$v_3 = (1, 2, 3, -1)$$

IV. Let $f: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by f(x, y, z) = (x - y, 0, 2x - 2y, x - y - 2z).

IV.1. Show that f is a linear map.

IV.2. Find a basis of Im(f).

IV.3. Find a basis of Ker(f).

V. Let $W = \{(x - y, x - y + z, z, 0, 2z) : x, y, z \in \mathbb{R}\}$. W is a subspace of \mathbb{R}^5 . Find a basis of the quotient space \mathbb{R}^5/W .

VI. Let $f: V \to W$ be a linear map between two vector spaces V and W.

VI.1. Show that if $v_1, ..., v_n \in V$ are such that $f(v_1), ..., f(v_n)$ are linearly independent, then $v_1, ..., v_n$ are also linearly independent.

IV.2. Conclude that dim $V \ge \dim f(V)$.