Math 232 (Linear Algebra)

Midterm 1 for Math majors Şubat 1999 Ali Nesin – Özlem Beyarslan

I. Let *K* be a field, *A* a set and Π a set of subsets of *A*. Let *V* be the set of functions from *A* into *K*. *V* is a vector space over *K* with the usual operations (addition and scalar multiplication). Let *V*(Π) be the set of elements of *V* that vanish on a set that belongs to Π . Thus,

 $V(\Pi) = \{ f : A \to K : \text{ there is } X \in \Pi \text{ such that } f = 0 \text{ on } X \}.$ **I.1.** Find the necessary and sufficient condition for $V(\Pi)$ to be a subspace of *V*. **I.2.** Is every subspace of *V* of the form $V(\Pi)$ for some set Π of subsets of *A*?

II. Let V and W be two vector spaces of dimension n and m over the same field K. Show that $V \times W$ is a vector space of dimension n + m.

III. Let *V* be a vector space and *A* and *B* be two subspaces of *V*. Show that dim(A + B) = dim(A) + dim(B) - dim($A \cap B$)

IV. Let *V* and *W* be two vector spaces over the same field.

IV.1. Show that the set of linear maps $Hom_{K}(V, W)$ is a vector space over the same field.

Assume from now on that dim(*V*) = *n* and dim(*W*) = *m*. Let $v_1, ..., v_n$ and $w_1, ..., w_m$ be bases of *V* and *W* respectively. For i = 1, ..., n and j = 1, ..., m define $f_{ij} : V \to W$ by the rule $f_{ij}(\alpha_1v_1 + ... + \alpha_nv_n) = \alpha_iw_j$.

IV.2. Show that $f_{ii} \in \text{Hom}_{K}(V, W)$.

IV.3. Show that the set $\{f_{ij} : i = 1, ..., n ; j = 1, ..., m\}$ is linearly independent.

IV.4. Show that the set $\{f_{ij} : i = 1, ..., n ; j = 1, ..., m\}$ is a basis of Hom_{*K*}(*V*, *W*). **IV.5.** Show that dim(Hom_{*K*}(*V*, *W*)) = *nm*.

V. Show that \mathbf{F}_q^n has exactly $(q^n - 1)(q^n - q) \dots (q^n - q^{n-1})$ different basis. (**Hint:** Choose the vectors of a basis one by one! The first one cannot be the zero vector...)

VI. Let V be a vector space over a field K. Show that the set GL(V) of K-vector space automorphisms of V form a group under the composition.

VII. Let $V = \mathbf{F}_q^n$. Show that GL(V) has $(q^n - 1)(q^n - q) \dots (q^n - q^{n-1})$ elements. (**Hint:** GL(V) is defined in question IV. Look at question V).