Math 232
(Linear Algebra)
Midterm 1 for CS majors
Şubat 1999
Ali Nesin - Özlem Beyarslan

I. Are the following sets vector spaces over \mathbb{R} ?
a. $A=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x) \geq 0$ for all $x \in \mathbb{R}\}$
b. $B=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=0$ for all $x \geq 0\}$
c. $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z \in \mathbb{Z}\right\}$
d. $D=\left\{\left(x, x^{2}\right) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}$

Justify your answers.
II. Find a basis of the following vector space:

$$
\left\{(x, y, x+2 y, z+t, z-t, u+x) \in \mathbb{R}^{6}: x+y+z+t+u=0\right\} .
$$

III. Find the subspace of \mathbb{R}^{4} generated by the vectors

$$
\begin{aligned}
& v_{1}=(1,2,3,1) \\
& v_{2}=(1,2,3,2)
\end{aligned}
$$

IV. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by $f(x, y, z)=(x-y, 0,2 x-2 y, x+y-2 z)$.
IV.1. Show that f is a linear map.
IV.2. Find a basis of $\operatorname{Im}(f)$.
IV.3. Find a basis of $\operatorname{Ker}(f)$.
V. Let $W=\{(x-y, x-y+z, z, 0,2 z): x, y, z \in \mathbb{R}\} . W$ is a subspace of \mathbb{R}^{5}. Find a basis of the quotient space \mathbb{R}^{5} / W.
VI. Let $f: V \rightarrow W$ be a linear map between two vector spaces V and W.
VI.1. Show that if $v_{1}, \ldots, v_{n} \in V$ are such that $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ are linearly independent, then v_{1}, \ldots, v_{n} are also linearly independent.
IV.2. Conclude that $\operatorname{dim} V \geq \operatorname{dim} f(V)$.
VII. Let V be a vector space and A and B be two subspaces of V. Show that $A+B$ $=\operatorname{Vect}(A \cup B)$.
VIII. Let V and W be two vector spaces of dimension n and m over the same field K. Show that $V \times W$ is a vector space of dimension $n+m$.

