Math 232 (Linear Algebra)

Midterm 1 for CS majors Şubat 1999 Ali Nesin – Özlem Beyarslan

I. Are the following sets vector spaces over \mathbb{R} ?

a. $A = \{f : \mathbb{R} \to \mathbb{R} : f(x) \ge 0 \text{ for all } x \in \mathbb{R}\}$ **b.** $B = \{f : \mathbb{R} \to \mathbb{R} : f(x) = 0 \text{ for all } x \ge 0\}$ **c.** $C = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \in \mathbb{Z}\}$ **d.** $D = \{(x, x^2) \in \mathbb{R}^2 : x \in \mathbb{R}\}$

Justify your answers.

II. Find a basis of the following vector space:

 $\{(x, y, x + 2y, z + t, z - t, u + x) \in \mathbb{R}^{6} : x + y + z + t + u = 0\}.$

III. Find the subspace of \mathbb{R}^4 generated by the vectors

 $v_1 = (1, 2, 3, 1)$ $v_2 = (1, 2, 3, 2)$

IV. Let $f : \mathbb{R}^3 \to \mathbb{R}^4$ be defined by f(x, y, z) = (x - y, 0, 2x - 2y, x + y - 2z). **IV.1.** Show that *f* is a linear map. **IV.2.** Find a basis of Im(*f*). **IV.3.** Find a basis of Ker(*f*).

V. Let $W = \{(x - y, x - y + z, z, 0, 2z) : x, y, z \in \mathbb{R}\}$. W is a subspace of \mathbb{R}^5 . Find a basis of the quotient space \mathbb{R}^5/W .

VI. Let $f: V \to W$ be a linear map between two vector spaces V and W.

VI.1. Show that if $v_1, ..., v_n \in V$ are such that $f(v_1), ..., f(v_n)$ are linearly independent, then $v_1, ..., v_n$ are also linearly independent.

IV.2. Conclude that dim $V \ge \dim f(V)$.

VII. Let *V* be a vector space and *A* and *B* be two subspaces of *V*. Show that $A + B = \text{Vect}(A \cup B)$.

VIII. Let *V* and *W* be two vector spaces of dimension *n* and *m* over the same field *K*. Show that $V \times W$ is a vector space of dimension n + m.