Algebra
 (Math 211)
 First Midterm

Fall 2002
Ali Nesin
December 2, 2002

Throughout G stands for a group.

1. Let $H, K \leq G$. Show that $\{H x K: x \in G\}$ is a partition of G. (3 pts.)

Proof: The relation $x \equiv y$ defined by " $H x K=H y K$ " is certainly reflexive and symmetric. Let us prove the transitivity. It is clear that $H x K=H y K$ if and only if $x \in H y K$. Thus if $x \in H y K$ and $y \in H z K$, then $x \in H H z K K \subseteq H z K$.
2. Let $H \leq G$. Show that there is a natural one to one correspondence between the left coset space of H in G and the right coset space of H in G. (3 pts.)

Proof: Consider the map $x H \mapsto H x^{-1}$. This is well defined and one to one because $x H=y H$ if and only if $y^{-1} x \in H$ if and only if $y^{-1} \in H x^{-1}$ if and only if $H y^{-1}=H x^{-1}$. It is also onto.
3. Let $H, K \leq G$. Show that $x H \cap y K$ is either empty or of the form $z(H \cap K)$ for some $z \in G$. (5 pts.)
Proof: Assume $x H \cap y K \neq \emptyset$. Let $z \in x H \cap y K$. Then $x H=z H$ and $y K=z K$. So $x H \cap y K=z H \cap z K=z(H \cap K)$.
4. a) Show that the intersection of two subgroups of finite index is finite. (5 pts.)
b) If $[G: H]=n$ and $[G: K]=m$, what can you say about $[G: H \cap K]$? (7 pts.)
Proof: (a) Let H and K be two subgroups of index n and m of a group G. Then for any $x \in G, x(H \cap K)=x H \cap x K$ and there are at most n choices for $x H$ and m choices for $x K$. Hence $[G: H \cap K] \leq n m$.
(b) If $C \leq B \leq A$ and if the indices are finite then $[A: C]=[A: B][B: C]$ because cosets of C partition B and cosets of B partition A, i.e. if $B=$ $\sqcup_{i=1}^{r} b_{i} C$ and $A=\sqcup_{j=1}^{s} a_{j} B$, then $A=\sqcup_{i=1}^{r} \sqcup_{j=1}^{s} b_{i} a_{j} C$.

Thus $[G: K \cap H]=[G: H][H: H \cap K]=[G: K][K: H \cap K]$. It follows that n and m both divide $[G: K \cap H]$, hence $\operatorname{lcm}(n, m)$ divides $[G: K \cap H]$. Further in part (a) we have seen that $[G: K \cap H] \leq m n$.
5. Let G be a group and $H \leq G$ a subgroup of index n. Let $X=G / H$ be the left coset space. For $g \in G$, define $\tilde{g}: G / H \longrightarrow G / H$ by $\tilde{g}(x H)=g x H$ for $x \in G$.
a) Show that $\tilde{g} \in \operatorname{Sym}(X)$. (2 pts .)
b) Show that ${ }^{\sim}: G \longrightarrow \operatorname{Sym}(X)$ is a homomorphism of groups. (3 pts.)
c) Show that $\operatorname{Ker}\left({ }^{\sim}\right)$ is the largest normal subgroup of G contained in H. (5 pts.)
d) Show that $\left[G: \operatorname{Ker}\left({ }^{\sim}\right)\right]$ divides $n!$. (5 pts.)
e) Conclude that there is an $m \in \mathbb{N} \backslash\{0\}$ such that for every $g \in G$, $g^{m} \in H$. (3 pts.)
f) Conclude that a divisible group ${ }^{1}$ cannot have a proper subgroup of finite index. (7 pts.)
Proof: (a) \tilde{g} is one to one because if $\tilde{g}(x H)=\tilde{g}\left(x_{1} H\right)$ then $g x H=g x_{1} H$, and so $x H=x_{1} H . \tilde{g}$ is onto because if $x H \in G / H$, then $\tilde{g}\left(g^{-1} x H\right)=x H$.
(b) Let $g, h \in G$ be any two elements. Since $(\tilde{g} \circ \tilde{h})(x H)=\tilde{g}(\tilde{h})(x H))=$ $\tilde{g}(h x H)=g h x H=\widetilde{g h}(x H)$ for all $x H \in G / H, \tilde{g} \circ \tilde{h} \widetilde{g h}$. Hence \sim is a group homomorphism.
(c) $\operatorname{Ker}\left({ }^{\sim}\right)$ is certainly a normal subgroup of G. Also $\operatorname{Ker}\left({ }^{\sim}\right)=\{g \in G$: $\tilde{g}=\operatorname{Id}\}=\{g \in G: g x H=x H$ for all $x \in G\}=\left\{g \in G: x^{-1} g x \in\right.$ H for all $x \in G\}=\left\{g \in G: g \in x H x^{-1}\right.$ for all $\left.x \in G\right\}=\cap_{x \in G} H^{x}$. It is now clear that $\operatorname{Ker}\left(^{\sim}\right)$ is the largest normal subgroup of G contained in H.
(d) By above $G / \operatorname{Ker}\left(^{\sim}\right)$ embeds in $\operatorname{Sym}(G / H) \simeq \operatorname{Sym}(n)$.
(e) Take $m=n$!.
(f) Let G be a divisible group and $H \leq G$ a subgroup of index n. Let $g \in G$. Let $h \in G$ be such that $g=h^{n!}$. By the above, $g=h^{n!} \in H$. So $G=H$.
6. Recall that $Z(G)=\{z \in G: z g=g z\}$.
a) Show that $Z(G) \triangleleft G$. (3 pts.)
b) Assume that $G / Z(G)$ is cyclic. Show that G is abelian. (7 pts .)

Proof: (a) If $z, z_{1} \in Z(G)$, then for all $g \in G,\left(z z_{1}\right) g=z\left(z_{1} g\right)=z\left(g z_{1}\right)=$ $(z g) z_{1}=(g z) z_{1}=g\left(z z_{1}\right.$, so that $z z_{1} \in Z(G)$. Thus $Z(G)$ is closed under multiplication. Clearly $1 \in Z(G)$. Finally, if $z \in Z(G)$, since for all $g \in G$, $g z=z g$, multiplying by z^{-1} from left and right, we see that $g z^{-1}=z^{-1} g$, i.e. $z^{-1} \in Z(G)$. Thus $Z(G)$ is a subgroup.

[^0]If $z \in Z(G)$ and $g \in G$, then $g^{-1} z g=z$, so that $g^{-1} Z(G) g \subseteq Z(G)$. This means exactly that $Z(G)$ is a normal subgroup of G.
7. Let G^{\prime} be the subgroup generated by $\left\{x y x^{-1} y^{-1}: x, y \in G\right\}$.
a) Show that $G^{\prime} \triangleleft G$. (5 pts.)
b) Show that G / G^{\prime} is abelian. (5 pts.)
c) Let $H \triangleleft G$. Show that if G / H is abelian then $G^{\prime} \leq H$. (5 pts.)
d) Show that G^{\prime} is the smallest normal subgroup H of G such that G / H is abelian. (3 pts .)
e) Let $H=\left\langle g^{2}: g \in G\right\rangle$. Show that $H \leq G^{\prime}$. (5 pts.)

Proof: (a) For $x, y, g \in G, g^{-1}(x y) g=\left(g^{-1} x g\right)\left(g^{-1} y g\right)$ and so $g^{-1}\left(x y x^{-1} y^{-1}\right) g=$ $\left(g^{-1} x g\right)\left(g^{-1} y g\right)\left(g^{-1} x g\right)^{-1}\left(g^{-1} y g\right)^{-1}$. Hence $g^{-1}\left\langle x y x^{-1} y^{-1}: x, y \in G\right\rangle g \leq$ $\left\langle x y x^{-1} y^{-1}: x, y \in G\right\rangle$, i.e. $G^{\prime}:=\left\langle x y x^{-1} y^{-1}: x, y \in G\right\rangle$ is a normal subgroup of G.
(b) For any $\bar{x}, \bar{y} \in G, \bar{x}^{-1} \bar{y}^{-1} \overline{x y}=\overline{x^{-1} y^{-1} x y}=\overline{1}$ because $x^{-1} y^{-1} x y \in G^{\prime}$.
(c) For any $x, y \in G, \overline{1}=\bar{x}^{-1} \bar{y}^{-1} \overline{x y}=\overline{x^{-1} y^{-1} x y}$, i.e. $x^{-1} y^{-1} x y \in H$. It follows that $G^{\prime} \leq H$.
(d) Follows directly from part (c)
(e) We first claim that if G is a group in which every element has order 2, then G is abelian. Indeed, for any $g, h \in G, g h g h=(g h)^{2}=1$, so that $g h=h^{-1} g^{-1}=h g$.
Now we prove (e). Clearly, for any $\bar{g} \in G / H, \bar{g}^{2}=\overline{1}$. Such a group must be abelian. Thus $G^{\prime} \leq H$ by part (c).
8. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ define the relation $\alpha R \beta$ if and only if $\alpha \cap \beta=\emptyset$. Then Γ becomes a graph with this relation.
a) Calculate $\operatorname{Aut}(\Gamma)$ when $|X|=4$. (5 pts.)
b) Draw the graph Γ when $X=\{1,2,3,4,5\}$. (3 pts.)
c) Show that $\operatorname{Sym}(5)$ imbeds in $\operatorname{Aut}(\Gamma)$ naturally. (5 pts.)
d) Show that $\operatorname{Aut}(\Gamma) \simeq \operatorname{Sym}(5)$. (7 pts.)

Answer: (a) The graph Γ is just six vertices joined two by two. A group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ preserves the edges. And $\operatorname{Sym}(3)$ permutes the edges. Thus the group has $8 \times 3!=48$ elements .
More formally, one can prove this as follows. Let the points be $\{1,2,3,4,5,6\}$ and the edges be $v_{1}=(1,4), v_{2}=(2,5)$ and $v_{3}=(3,6)$. We can embed
$\operatorname{Sym}(3)$ in $\operatorname{Aut}(\Gamma) \leq \operatorname{Sym}(6)$ via

Id_{3}	\mapsto	Id_{6}
(12)	\mapsto	$(12)(45)$
(13)	\mapsto	$(13)(46)$
(23)	\mapsto	$(23)(56)$
(123)	\mapsto	$(123)(456)$
(132)	\mapsto	$(132)(465)$

For any $\phi \in \operatorname{Aut}(\Gamma)$ there is an element α in the image of $\operatorname{Sym}(3)$ such that $\alpha^{-1} \phi$ preserves the three edges $v_{1}=(1,4), v_{2}=(2,5)$ and $v_{3}=(3,6)$. Thus $\alpha^{-1} \phi \in \operatorname{Sym}\{1,4\} \times \operatorname{Sym}\{2,5\} \times \operatorname{Sym}\{3,6\} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3}$. It follows that $\operatorname{Aut}(\Gamma) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3} \rtimes \operatorname{Sym}(3)$ (to be explained next year).
(b) There are ten points. Draw two pentagons one inside the other. Label the outside points as $\{1,2\},\{3,4\},\{5,1\},\{2,3\},\{4,5\}$. Complete the graph.
(c and d) Clearly any element of $\sigma \in \operatorname{Sym}(5)$ gives rise to an automorphism $\tilde{\sigma}$ of Γ via $\tilde{\sigma}\{a, b\}=\{\sigma(a), \sigma(b)\}$. The fact that this map preserves the incidence relation is clear. This map is one to one because if $\tilde{\sigma}=\tilde{\tau}$, then for all distinct a, b, c, we have $\{\sigma(b)\}=\{\sigma(a), \sigma(b)\} \cap\{\sigma(b), \sigma(c)\}=$ $\tilde{\sigma}\{a, b\} \cap \tilde{\sigma}\{b, c\}=\tilde{\tau}\{a, b\} \cap \tilde{\tau}\{b, c\}=\{\tau(a), \tau(b)\} \cap\{\tau(b), \tau(c)\}=\{\tau(b)\}$ and hence $\sigma(b)=\tau(b)$.
Let $\phi \in \operatorname{Aut}(\Gamma)$. We will compose ϕ by elements of $\operatorname{Sym}(5)$ to obtain the identity map. There is an $\sigma \in \operatorname{Sym}(5)$ such that $\phi\{1,2\}=\tilde{\sigma}\{1,2\}$ and $\phi\{3,4\}=\tilde{\sigma}\{3,4\}$. Thus, replacing ϕ by $\sigma^{-1} \phi$, we may assume that ϕ fixes the vertices $\{1,2\}$ and $\{3,4\}$. Now ϕ must preserve or exchange the vertices $\{3,5\}$ and $\{4,5\}$. By applying the element (34) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now ϕ must preserve or exchange the vertices $\{1,3\}$ and $\{2,3\}$. By applying the element (12) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now all the vertices must be fixed.

[^0]: ${ }^{1}$ A group G is called divisible if for any $g \in G$ and any integer $n \geq n$ there is an $h \in G$ such that $g=h^{n}$.

