Algebra (Math 211) First Midterm

Fall 2002 Ali Nesin

December 2, 2002

Throughout G stands for a group.

- 1. Let $H, K \leq G$. Show that $\{HxK : x \in G\}$ is a partition of G. (3 pts.)
 - **Proof:** The relation $x \equiv y$ defined by "HxK = HyK" is certainly reflexive and symmetric. Let us prove the transitivity. It is clear that HxK = HyK if and only if $x \in HyK$. Thus if $x \in HyK$ and $y \in HzK$, then $x \in HHzKK \subseteq HzK$.
- 2. Let $H \leq G$. Show that there is a natural one to one correspondence between the left coset space of H in G and the right coset space of H in G. (3 pts.)

Proof: Consider the map $xH \mapsto Hx^{-1}$. This is well defined and one to one because xH = yH if and only if $y^{-1}x \in H$ if and only if $y^{-1} \in Hx^{-1}$ if and only if $Hy^{-1} = Hx^{-1}$. It is also onto.

3. Let $H, K \leq G$. Show that $xH \cap yK$ is either empty or of the form $z(H \cap K)$ for some $z \in G$. (5 pts.)

Proof: Assume $xH \cap yK \neq \emptyset$. Let $z \in xH \cap yK$. Then xH = zH and yK = zK. So $xH \cap yK = zH \cap zK = z(H \cap K)$.

4. a) Show that the intersection of two subgroups of finite index is finite. (5 pts.)

b) If [G:H] = n and [G:K] = m, what can you say about $[G:H \cap K]$? (7 pts.)

Proof: (a) Let H and K be two subgroups of index n and m of a group G. Then for any $x \in G$, $x(H \cap K) = xH \cap xK$ and there are at most n choices for xH and m choices for xK. Hence $[G : H \cap K] \leq nm$.

(b) If $C \leq B \leq A$ and if the indices are finite then [A:C] = [A:B][B:C]because cosets of C partition B and cosets of B partition A, i.e. if $B = \bigcup_{i=1}^{r} b_i C$ and $A = \bigcup_{j=1}^{s} a_j B$, then $A = \bigcup_{i=1}^{r} \bigcup_{j=1}^{s} b_i a_j C$. Thus $[G: K \cap H] = [G: H][H: H \cap K] = [G: K][K: H \cap K]$. It follows that n and m both divide $[G: K \cap H]$, hence lcm(n, m) divides $[G: K \cap H]$. Further in part (a) we have seen that $[G: K \cap H] \leq mn$.

- 5. Let G be a group and $H \leq G$ a subgroup of index n. Let X = G/H be the left coset space. For $g \in G$, define $\tilde{g} : G/H \longrightarrow G/H$ by $\tilde{g}(xH) = gxH$ for $x \in G$.
 - a) Show that $\tilde{g} \in \text{Sym}(X)$. (2 pts.)
 - b) Show that $\tilde{}: G \longrightarrow \text{Sym}(X)$ is a homomorphism of groups. (3 pts.)

c) Show that Ker(~) is the largest normal subgroup of G contained in H. (5 pts.)

d) Show that $[G : \text{Ker}(\tilde{})]$ divides n!. (5 pts.)

e) Conclude that there is an $m \in \mathbb{N} \setminus \{0\}$ such that for every $g \in G$, $g^m \in H$. (3 pts.)

f) Conclude that a divisible group 1 cannot have a proper subgroup of finite index. (7 pts.)

Proof: (a) \tilde{g} is one to one because if $\tilde{g}(xH) = \tilde{g}(x_1H)$ then $gxH = gx_1H$, and so $xH = x_1H$. \tilde{g} is onto because if $xH \in G/H$, then $\tilde{g}(g^{-1}xH) = xH$. (b) Let $g, h \in G$ be any two elements. Since $(\tilde{g} \circ \tilde{h})(xH) = \tilde{g}(\tilde{h})(xH)) =$ $\tilde{g}(hxH) = ghxH = \widetilde{gh}(xH)$ for all $xH \in G/H$, $\tilde{g} \circ \tilde{hgh}$. Hence \tilde{f} is a group homomorphism.

(c) Ker(~) is certainly a normal subgroup of G. Also Ker(~) = $\{g \in G : \tilde{g} = \mathrm{Id}\}$ = $\{g \in G : gxH = xH$ for all $x \in G\}$ = $\{g \in G : x^{-1}gx \in H$ for all $x \in G\}$ = $\{g \in G : g \in xHx^{-1}$ for all $x \in G\}$ = $\cap_{x \in G}H^x$. It is now clear that Ker(~) is the largest normal subgroup of G contained in H.

- (d) By above $G/\operatorname{Ker}(\tilde{})$ embeds in $\operatorname{Sym}(G/H) \simeq \operatorname{Sym}(n)$.
- (e) Take m = n!.

(f) Let G be a divisible group and $H \leq G$ a subgroup of index n. Let $g \in G$. Let $h \in G$ be such that $g = h^{n!}$. By the above, $g = h^{n!} \in H$. So G = H.

6. Recall that $Z(G) = \{z \in G : zg = gz\}.$

a) Show that $Z(G) \triangleleft G$. (3 pts.)

b) Assume that G/Z(G) is cyclic. Show that G is abelian. (7 pts.)

Proof: (a) If $z, z_1 \in Z(G)$, then for all $g \in G$, $(zz_1)g = z(z_1g) = z(gz_1) = (zg)z_1 = (gz)z_1 = g(zz_1, \text{ so that } zz_1 \in Z(G)$. Thus Z(G) is closed under multiplication. Clearly $1 \in Z(G)$. Finally, if $z \in Z(G)$, since for all $g \in G$, gz = zg, multiplying by z^{-1} from left and right, we see that $gz^{-1} = z^{-1}g$, i.e. $z^{-1} \in Z(G)$. Thus Z(G) is a subgroup.

¹A group G is called divisible if for any $g \in G$ and any integer $n \ge n$ there is an $h \in G$ such that $g = h^n$.

If $z \in Z(G)$ and $g \in G$, then $g^{-1}zg = z$, so that $g^{-1}Z(G)g \subseteq Z(G)$. This means exactly that Z(G) is a normal subgroup of G.

- 7. Let G' be the subgroup generated by $\{xyx^{-1}y^{-1}: x, y \in G\}$.
 - a) Show that $G' \lhd G$. (5 pts.)
 - b) Show that G/G' is abelian. (5 pts.)
 - c) Let $H \triangleleft G$. Show that if G/H is abelian then $G' \leq H$. (5 pts.)

d) Show that G' is the smallest normal subgroup H of G such that G/H is abelian. (3 pts.)

e) Let $H = \langle g^2 : g \in G \rangle$. Show that $H \leq G'$. (5 pts.)

Proof: (a) For $x, y, g \in G, g^{-1}(xy)g = (g^{-1}xg)(g^{-1}yg)$ and so $g^{-1}(xyx^{-1}y^{-1})g = (g^{-1}xg)(g^{-1}yg)(g^{-1}xg)^{-1}(g^{-1}yg)^{-1}$. Hence $g^{-1}\langle xyx^{-1}y^{-1} : x, y \in G \rangle g \leq \langle xyx^{-1}y^{-1} : x, y \in G \rangle$, i.e. $G' := \langle xyx^{-1}y^{-1} : x, y \in G \rangle$ is a normal subgroup of G.

(b) For any $\overline{x}, \overline{y} \in G, \overline{x}^{-1}\overline{y}^{-1}\overline{xy} = \overline{x^{-1}y^{-1}xy} = \overline{1}$ because $x^{-1}y^{-1}xy \in G'$.

(c) For any $x, y \in G$, $\overline{1} = \overline{x}^{-1}\overline{y}^{-1}\overline{x}\overline{y} = \overline{x^{-1}y^{-1}xy}$, i.e. $x^{-1}y^{-1}xy \in H$. It follows that $G' \leq H$.

(d) Follows directly from part (c)

(e) We first claim that if G is a group in which every element has order 2, then G is abelian. Indeed, for any $g, h \in G$, $ghgh = (gh)^2 = 1$, so that $gh = h^{-1}g^{-1} = hg$.

Now we prove (e). Clearly, for any $\overline{g} \in G/H$, $\overline{g}^2 = \overline{1}$. Such a group must be abelian. Thus $G' \leq H$ by part (c).

- 8. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ define the relation $\alpha R\beta$ if and only if $\alpha \cap \beta = \emptyset$. Then Γ becomes a graph with this relation.
 - a) Calculate Aut(Γ) when |X| = 4. (5 pts.)
 - b) Draw the graph Γ when $X = \{1, 2, 3, 4, 5\}$. (3 pts.)
 - c) Show that Sym(5) imbeds in $Aut(\Gamma)$ naturally. (5 pts.)
 - d) Show that $\operatorname{Aut}(\Gamma) \simeq \operatorname{Sym}(5)$. (7 pts.)

Answer: (a) The graph Γ is just six vertices joined two by two. A group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$ preserves the edges. And Sym(3) permutes the edges. Thus the group has $8 \times 3! = 48$ elements.

More formally, one can prove this as follows. Let the points be $\{1, 2, 3, 4, 5, 6\}$ and the edges be $v_1 = (1, 4)$, $v_2 = (2, 5)$ and $v_3 = (3, 6)$. We can embed

 $\operatorname{Sym}(3)$ in $\operatorname{Aut}(\Gamma) \leq \operatorname{Sym}(6)$ via

For any $\phi \in \operatorname{Aut}(\Gamma)$ there is an element α in the image of Sym(3) such that $\alpha^{-1}\phi$ preserves the three edges $v_1 = (1, 4), v_2 = (2, 5)$ and $v_3 = (3, 6)$. Thus $\alpha^{-1}\phi \in \operatorname{Sym}\{1, 4\} \times \operatorname{Sym}\{2, 5\} \times \operatorname{Sym}\{3, 6\} \simeq (\mathbb{Z}/2\mathbb{Z})^3$. It follows that $\operatorname{Aut}(\Gamma) \simeq (\mathbb{Z}/2\mathbb{Z})^3 \rtimes \operatorname{Sym}(3)$ (to be explained next year).

(b) There are ten points. Draw two pentagons one inside the other. Label the outside points as $\{1,2\}$, $\{3,4\}$, $\{5,1\}$, $\{2,3\}$, $\{4,5\}$. Complete the graph.

(c and d) Clearly any element of $\sigma \in \text{Sym}(5)$ gives rise to an automorphism $\tilde{\sigma}$ of Γ via $\tilde{\sigma}\{a, b\} = \{\sigma(a), \sigma(b)\}$. The fact that this map preserves the incidence relation is clear. This map is one to one because if $\tilde{\sigma} = \tilde{\tau}$, then for all distinct a, b, c, we have $\{\sigma(b)\} = \{\sigma(a), \sigma(b)\} \cap \{\sigma(b), \sigma(c)\} = \tilde{\sigma}\{a, b\} \cap \tilde{\sigma}\{b, c\} = \tilde{\tau}\{a, b\} \cap \tilde{\tau}\{b, c\} = \{\tau(a), \tau(b)\} \cap \{\tau(b), \tau(c)\} = \{\tau(b)\}$ and hence $\sigma(b) = \tau(b)$.

Let $\phi \in \operatorname{Aut}(\Gamma)$. We will compose ϕ by elements of $\operatorname{Sym}(5)$ to obtain the identity map. There is an $\sigma \in \operatorname{Sym}(5)$ such that $\phi\{1,2\} = \tilde{\sigma}\{1,2\}$ and $\phi\{3,4\} = \tilde{\sigma}\{3,4\}$. Thus, replacing ϕ by $\sigma^{-1}\phi$, we may assume that ϕ fixes the vertices $\{1,2\}$ and $\{3,4\}$. Now ϕ must preserve or exchange the vertices $\{3,5\}$ and $\{4,5\}$. By applying the element (34) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now ϕ must preserve or exchange the vertices $\{1,3\}$ and $\{2,3\}$. By applying the element (12) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now all the vertices must be fixed.