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Throughout G stands for a group.

1. Let H,K ≤ G. Show that {HxK : x ∈ G} is a partition of G. (3 pts.)

Proof: The relation x ≡ y defined by “HxK = HyK” is certainly re-
flexive and symmetric. Let us prove the transitivity. It is clear that
HxK = HyK if and only if x ∈ HyK. Thus if x ∈ HyK and y ∈ HzK,
then x ∈ HHzKK ⊆ HzK.

2. Let H ≤ G. Show that there is a natural one to one correspondence
between the left coset space of H in G and the right coset space of H in
G. (3 pts.)

Proof: Consider the map xH 7→ Hx−1. This is well defined and one to
one because xH = yH if and only if y−1x ∈ H if and only if y−1 ∈ Hx−1

if and only if Hy−1 = Hx−1. It is also onto.

3. Let H,K ≤ G. Show that xH∩yK is either empty or of the form z(H∩K)
for some z ∈ G. (5 pts.)

Proof: Assume xH ∩ yK 6= ∅. Let z ∈ xH ∩ yK. Then xH = zH and
yK = zK. So xH ∩ yK = zH ∩ zK = z(H ∩K).

4. a) Show that the intersection of two subgroups of finite index is finite. (5
pts.)

b) If [G : H] = n and [G : K] = m, what can you say about [G : H ∩K]?
(7 pts.)

Proof: (a) Let H and K be two subgroups of index n and m of a group
G. Then for any x ∈ G, x(H ∩K) = xH ∩ xK and there are at most n
choices for xH and m choices for xK. Hence [G : H ∩K] ≤ nm.

(b) If C ≤ B ≤ A and if the indices are finite then [A : C] = [A : B][B : C]
because cosets of C partition B and cosets of B partition A, i.e. if B =
tr

i=1biC and A = ts
j=1ajB, then A = tr

i=1 ts
j=1 biajC.
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Thus [G : K ∩ H] = [G : H][H : H ∩ K] = [G : K][K : H ∩ K]. It
follows that n and m both divide [G : K ∩ H], hence lcm(n,m) divides
[G : K ∩H]. Further in part (a) we have seen that [G : K ∩H] ≤ mn.

5. Let G be a group and H ≤ G a subgroup of index n. Let X = G/H be the
left coset space. For g ∈ G, define g̃ : G/H −→ G/H by g̃(xH) = gxH
for x ∈ G.

a) Show that g̃ ∈ Sym(X). (2 pts.)

b) Show that˜ : G −→ Sym(X) is a homomorphism of groups. (3 pts.)

c) Show that Ker(̃ ) is the largest normal subgroup of G contained in H.
(5 pts.)

d) Show that [G : Ker(̃ )] divides n!. (5 pts.)

e) Conclude that there is an m ∈ N \ {0} such that for every g ∈ G,
gm ∈ H. (3 pts.)

f) Conclude that a divisible group1 cannot have a proper subgroup of finite
index. (7 pts.)

Proof: (a) g̃ is one to one because if g̃(xH) = g̃(x1H) then gxH = gx1H,
and so xH = x1H. g̃ is onto because if xH ∈ G/H, then g̃(g−1xH) = xH.

(b) Let g, h ∈ G be any two elements. Since (g̃ ◦ h̃)(xH) = g̃(h̃)(xH)) =
g̃(hxH) = ghxH = g̃h(xH) for all xH ∈ G/H, g̃ ◦ h̃g̃h. Hence˜is a group
homomorphism.

(c) Ker(̃ ) is certainly a normal subgroup of G. Also Ker(̃ ) = {g ∈ G :
g̃ = Id} = {g ∈ G : gxH = xH for all x ∈ G} = {g ∈ G : x−1gx ∈
H for all x ∈ G} = {g ∈ G : g ∈ xHx−1 for all x ∈ G} = ∩x∈GHx. It is
now clear that Ker(̃ ) is the largest normal subgroup of G contained in H.

(d) By above G/ Ker(̃ ) embeds in Sym(G/H) ' Sym(n).

(e) Take m = n!.

(f) Let G be a divisible group and H ≤ G a subgroup of index n. Let
g ∈ G. Let h ∈ G be such that g = hn!. By the above, g = hn! ∈ H. So
G = H.

6. Recall that Z(G) = {z ∈ G : zg = gz}.
a) Show that Z(G) C G. (3 pts.)

b) Assume that G/Z(G) is cyclic. Show that G is abelian. (7 pts.)

Proof: (a) If z, z1 ∈ Z(G), then for all g ∈ G, (zz1)g = z(z1g) = z(gz1) =
(zg)z1 = (gz)z1 = g(zz1, so that zz1 ∈ Z(G). Thus Z(G) is closed under
multiplication. Clearly 1 ∈ Z(G). Finally, if z ∈ Z(G), since for all g ∈ G,
gz = zg, multiplying by z−1 from left and right, we see that gz−1 = z−1g,
i.e. z−1 ∈ Z(G). Thus Z(G) is a subgroup.

1A group G is called divisible if for any g ∈ G and any integer n ≥ n there is an h ∈ G
such that g = hn.
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If z ∈ Z(G) and g ∈ G, then g−1zg = z, so that g−1Z(G)g ⊆ Z(G). This
means exactly that Z(G) is a normal subgroup of G.

7. Let G′ be the subgroup generated by {xyx−1y−1 : x, y ∈ G}.
a) Show that G′ C G. (5 pts.)

b) Show that G/G′ is abelian. (5 pts.)

c) Let H C G. Show that if G/H is abelian then G′ ≤ H. (5 pts.)

d) Show that G′ is the smallest normal subgroup H of G such that G/H
is abelian. (3 pts.)

e) Let H = 〈g2 : g ∈ G〉. Show that H ≤ G′. (5 pts.)

Proof: (a) For x, y, g ∈ G, g−1(xy)g = (g−1xg)(g−1yg) and so g−1(xyx−1y−1)g =
(g−1xg)(g−1yg)(g−1xg)−1(g−1yg)−1. Hence g−1〈xyx−1y−1 : x, y ∈ G〉g ≤
〈xyx−1y−1 : x, y ∈ G〉, i.e. G′ := 〈xyx−1y−1 : x, y ∈ G〉 is a normal sub-
group of G.

(b) For any x, y ∈ G, x−1y−1xy = x−1y−1xy = 1 because x−1y−1xy ∈ G′.

(c) For any x, y ∈ G, 1 = x−1y−1xy = x−1y−1xy, i.e. x−1y−1xy ∈ H. It
follows that G′ ≤ H.

(d) Follows directly from part (c)

(e) We first claim that if G is a group in which every element has order
2, then G is abelian. Indeed, for any g, h ∈ G, ghgh = (gh)2 = 1, so that
gh = h−1g−1 = hg.

Now we prove (e). Clearly, for any g ∈ G/H, g2 = 1. Such a group must
be abelian. Thus G′ ≤ H by part (c).

8. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ
define the relation αRβ if and only if α∩ β = ∅. Then Γ becomes a graph
with this relation.

a) Calculate Aut(Γ) when |X| = 4. (5 pts.)

b) Draw the graph Γ when X = {1, 2, 3, 4, 5}. (3 pts.)

c) Show that Sym(5) imbeds in Aut(Γ) naturally. (5 pts.)

d) Show that Aut(Γ) ' Sym(5). (7 pts.)

Answer: (a) The graph Γ is just six vertices joined two by two. A group
isomorphic to (Z/2Z)3 preserves the edges. And Sym(3) permutes the
edges. Thus the group has 8× 3! = 48 elements.

More formally, one can prove this as follows. Let the points be {1, 2, 3, 4, 5, 6}
and the edges be v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6). We can embed
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Sym(3) in Aut(Γ) ≤ Sym(6) via

Id3 7→ Id6

(12) 7→ (12)(45)
(13) 7→ (13)(46)
(23) 7→ (23)(56)
(123) 7→ (123)(456)
(132) 7→ (132)(465)

For any φ ∈ Aut(Γ) there is an element α in the image of Sym(3) such
that α−1φ preserves the three edges v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6).
Thus α−1φ ∈ Sym{1, 4} × Sym{2, 5} × Sym{3, 6} ' (Z/2Z)3. It follows
that Aut(Γ) ' (Z/2Z)3o Sym(3) (to be explained next year).

(b) There are ten points. Draw two pentagons one inside the other. Label
the outside points as {1, 2}, {3, 4}, {5, 1}, {2, 3}, {4, 5}. Complete the
graph.

(c and d) Clearly any element of σ ∈ Sym(5) gives rise to an automorphism
σ̃ of Γ via σ̃{a, b} = {σ(a), σ(b)}. The fact that this map preserves the
incidence relation is clear. This map is one to one because if σ̃ = τ̃ ,
then for all distinct a, b, c, we have {σ(b)} = {σ(a), σ(b)} ∩ {σ(b), σ(c)} =
σ̃{a, b} ∩ σ̃{b, c} = τ̃{a, b} ∩ τ̃{b, c} = {τ(a), τ(b)} ∩ {τ(b), τ(c)} = {τ(b)}
and hence σ(b) = τ(b).

Let φ ∈ Aut(Γ). We will compose φ by elements of Sym(5) to obtain the
identity map. There is an σ ∈ Sym(5) such that φ{1, 2} = σ̃{1, 2} and
φ{3, 4} = σ̃{3, 4}. Thus, replacing φ by σ−1φ, we may assume that φ
fixes the vertices {1, 2} and {3, 4}. Now φ must preserve or exchange the
vertices {3, 5} and {4, 5}. By applying the element (34) of Sym(5) we may
assume that these two vertices are fixed as well. Now φ must preserve or
exchange the vertices {1, 3} and {2, 3}. By applying the element (12) of
Sym(5) we may assume that these two vertices are fixed as well. Now all
the vertices must be fixed.
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