Linear Algebra for Math

May 1999
Ali Nesin

1a. Show that the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are differentiable between 0 and 1 form an infinite dimensional vector space V over \mathbb{R}. (3 pts.)

1b. Find an explicit subspace W of V of codimension 1. (4 pts.)
2. Let V be a vector space over a field K. Let $\left(v_{i}\right)_{i \in I}$ be a basis of V. For $j \in I$, define a function v_{j}^{*} from V into K as follows: For all $v \in V$, if $v=\sum_{i \in I} \alpha_{i} v_{i}$ then $v_{j}^{*}(v)=\alpha_{j}$. I.e. v_{j}^{*} is the $j^{\text {th }}$ projection map.

2a. Show that the set of linear maps from V into K form a vector space V^{*}. (2 pt.)

2b. Show that $v_{j}{ }^{*} \in V^{*}$ for all $j \in J$. (1 pt.)
2c. Show that the linear maps $v_{j} *$ are linearly independent. (4 pts.)
2d. Assume V is finite dimensional. Let $f \in V^{*}$. Show that (4 pts.)

$$
f=\sum_{i \in I} f\left(v_{i}\right) v_{i} *
$$

Conclude that the set $\left(v_{i}\right)_{i \in I}$ form a basis of V^{*} when V is finite dimensional. (1 pt.)

2e. Assume V is infinite dimensional. Define $f: V \rightarrow K$ as follows: For $v \in V$, if

$$
v=\sum_{i \in I} \alpha_{i} v_{i}, \text { then } f(v)=\sum_{i \in I} \alpha_{i} .
$$

Show that f is not in the subspace of V^{*} generated by $\left(v_{i}^{*}\right)_{i \in I .}$. 7 pts .)
2f. $V^{* *}$ denotes $\left(V^{*}\right)^{*}$. For $v \in V$, define $v^{* *} \in V^{* *}$ as follows: For $f \in V^{*}$,

$$
v^{* *}(f)=f(v) .
$$

Show that $v^{* *}$ is really an element of $V^{* *}$. (2 pts.)
2g. Show that the map that sends $v \in V$ into $v^{* *} \in V^{* *}$ is a one-to-one linear map from V into $V^{* *}$. (7 pts.)
$\mathbf{2}$. Show that if V is finite dimensional, V and $V^{* *}$ are canonically isomorphic (i.e. there is an isomorphism from V into $V^{* *}$ whose definition does not depend on the choice of a basis of V). (4 pts.)

2h. Show that if V is infinite dimensional, the map in $\mathbf{2 g}$ is never onto. (Hint: Get your inspiration from 2e.) (10 pts.)
3. Let V be a finite dimensional vector space over a field K. Let $f: V \times V \rightarrow K$ be a bilinear map. Let $\left(v_{i}\right)_{i=1, \ldots, n}$ be a basis of $V, f\left(v_{i}, v_{j}\right)=\alpha_{i j}$ and $A\left(f, v_{1}, \ldots, v_{n}\right)=\left(\alpha_{i j}\right)_{i j}$, the $n \times n$ matrix.

3a. If $x \in V$ is written as $a_{1} v_{1}+\ldots+a_{n} v_{n}$, we set $X=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$. Show that $f(x, y)=$ $X^{t} A Y$ where X^{t} denotes the transpose of X and $A=A\left(f, v_{1}, \ldots, v_{n}\right.$). (Here we identified the 1×1 matrices with their entries). (5 pts .)

3b. Let $P \in \mathrm{GL}_{n}(K)$. Show that $A\left(f, P v_{1}, \ldots, P v_{n}\right)=P^{\mathrm{t}} A\left(f, v_{1}, \ldots, v_{n}\right) P$. (5 pts.)

3c. A bilinear map f is called symmetric if $f(x, y)=f(y, x)$ for all $x, y \in V$. It is called antisymmetric if $f(x, y)=-f(y, x)$ for all $x, y \in V$. Let $\mathbf{L}(V), \mathbf{L}_{\mathrm{s}}(V)$ and $\mathbf{L}_{\mathrm{a}}(V)$ be the set of bilinear, symmetric bilinear and antisymmetric bilinear maps on $V \times V$ respectively. Show that $\mathbf{L}(V), \mathbf{L}_{\mathrm{s}}(V)$ and $\mathbf{L}_{\mathrm{a}}(V)$ are all vector spaces and that if $\operatorname{char}(K)$ $\neq 2$, then $\mathbf{L}(V)=\mathbf{L}_{\mathrm{s}}(V) \oplus \mathbf{L}_{\mathrm{a}}(V)$. (5 pts .)

3d. Let $f \in \mathbf{L}_{\mathrm{s}}(V)$ and $A \subseteq V$. Define $A^{\perp}=\{v \in V: f(v, a)=0$ all $a \in A\}$. Show that A^{\perp} is a subspace of V and that $A^{\perp \perp \perp}=A^{\perp}$ for all $A \subseteq V$. (5 pts .)

3e. Let $f \in \mathbf{L}_{\mathrm{s}}(V)$. We say that f is nondegenerate if $V^{\perp}=0$. Show that f is nondegenerate iff A is invertible. (6 pts.)

3f. Let $f \in \mathbf{L}_{\mathbf{s}}(V)$ be nondegenerate. We say that $u \in \mathrm{GL}_{n}(K)$ respects f iff

$$
f(x, y)=f(u(x), u(y))
$$

for all $x, y \in V$. Show that the set $\mathrm{O}(f)$ of linear maps that respect f form a subgroup of $\mathrm{GL}_{n}(K)$. (8 pts.)

3g. Let $n=2$ and define $f\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=x_{1} x_{2}+y_{1} y_{2}$. Show that f is a nondegenerate symmetric bilinear map. Find explicitely the elements of $O(f)$. What can you say about the group structure of $\mathrm{O}(f)$? $(2+5+5$ pts. $)$

3h. Let V be the set of integrable functions from the interval $(0,1)$ into \mathbb{R}. Show that $f(v, w)=\int_{0}^{1} v(t) w(t) d t$ is a nondegenerate symmetric bilinear map. (You have to show first that $v w$ is integrable). (5 pts.)

