Linear Algebra for Math

Mayis 1999
Ali Nesin

1. Let

$$
\begin{aligned}
& v_{1}=(-1,2,1,0) \\
& v_{2}=(0,2,1,1) \\
& v_{3}=(1,0,1,-1) \\
& v_{4}=(0,1,1,1)
\end{aligned}
$$

1a. Show that these vectors form a basis of \mathbb{R}^{4}. (5 pts .)
1b. Write an arbitrary vector (a, b, c, d) as a linear combination of these four vectors. (5 pts.)

2a. Find the inverse of the matrix (10 pts .)

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
2 & 0 & 1 & 2 \\
2 & 1 & 1 & 1 \\
1-1 & 0 & 0
\end{array}\right)
$$

3. Let

$$
A=\left(\begin{array}{lrl}
4 & -4 & 2 \\
2 & -2 & 2 \\
-2 & 1 & 1
\end{array}\right)
$$

Find A^{333}. (15 pts.)

4a. Show that the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are integrable between 0 and 1 form an infinite dimensional vector space V over \mathbb{R}. (10 pts.)

4b. Find a subspace W of V such that $\operatorname{dim}(V / W)=1$. (10 pts.)
5. Let V be a vector space over \mathbb{R}. Let $\left(v_{i}\right)_{i \in I}$ be a basis of V. For $j \in I$, define a function v_{j}^{*} from V into \mathbb{R} as follows: For all $v \in V$,

$$
v=\sum_{i \in I} \alpha_{i} v_{i}
$$

then $v_{j}^{*}(v)=\alpha_{j}$.

5a. Show that the set of linear maps from V into \mathbb{R} form a vector space V^{*}. (10 pts.)

5b. Why is v_{j}^{*} well-defined? (5 pts.)
5c. Show that $v_{j}{ }^{*} \in V^{*}$ for all $j \in J$. (5 pts.)
5d. Show that the linear maps $v_{j}{ }^{*}$ are linearly independent. (10 pts.)
5e. Assume V is finite dimensional. Let $f \in V^{*}$ and set $f\left(v_{i}\right)=\beta_{i} \in \mathbb{R}$. Show that

$$
f=\sum_{i \in I} \beta_{i} v_{i} *
$$

Conclude that the set $\left(v_{i}^{*}\right)_{i \in I}$ form a basis of V^{*}. (10 pts.)
5f. Assume V is infinite dimensional. Define $f: V \rightarrow \mathbb{R}$ as follows: For $v \in V$, if $v=\sum_{i \in I} \alpha_{i} v_{i}$, then $f(v)=\sum_{i \in I} \alpha_{i}$.
Show that f is not in the subspace of V^{*} generated by $\left(v_{i}{ }^{*}\right)_{i \in I .}$. $(10 \mathrm{pts}$.

