Linear Algebra for CS

Mayıs 1999 Ali Nesin

1. Let

$$v_1 = (1,2,1,0)$$

$$v_2 = (0,2,1,1)$$

$$v_3 = (1,0,1,-1)$$

$$v_4 = (0,1,1,0)$$

1a. Show that these vectors form a basis of \mathbb{R}^4 . (5 pts.)

1b. Write an arbitrary vector (a, b, c, d) as a linear combination of these four vectors. (5 pts.)

1c. Let *V* be the subspace generated by v_1 and v_2 . Find a basis of \mathbb{R}^4/V . Justify your answer. (5 pts.)

2a. Find the inverse of the matrix (10 pts.)

	$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 2 \\ 2 & 1 & 1 & 1 \\ 1-1 & 0 & 0 \end{pmatrix}.$
2b. Solve the system (5 pts.)	
	y + t = 2 $2x + z + 2t = 0$
	2x + y + z + t = -6
	x - y = 2
3. Let	
	(4 - 4 2)
	$A = \begin{pmatrix} 4 & -4 & 2 \\ 2 & -2 & 2 \\ -2 & 1 & 1 \end{pmatrix}.$
	$(-2 \ 1 \ 1)$

Find A³³³. (15 pts.)

4a. Show that the set of functions $f : \mathbb{R} \to \mathbb{R}$ which are integrable between 0 and 1 form an infinite dimensional vector space *V* over \mathbb{R} . (10 pts.)

4b. Find a subspace *W* of *V* such that dim(V/W) = 1. (10 pts.)

5. Let *V* be a vector space over \mathbb{R} . Let $(v_i)_{i \in I}$ be a basis of *V*. For $j \in I$, define a function v_j^* from *V* into \mathbb{R} as follows:

For all
$$v \in V$$
, if $v = \sum_{i \in I} \alpha_i v_i$, then $v_j^*(v) = \alpha_j$

5a. Show that the set of linear maps from V into \mathbb{R} form a vector space V*. (10 pts.)

5b. Why is v_j^* well-defined? (5 pts.)

5c. Show that $v_j^* \in V^*$ for all $j \in J$. (5 pts.)

5d. Show that the linear maps v_j^* are linearly independent. (10 pts.)

5e. Assume *V* is finite dimensional. Let $f \in V^*$ and set $f(v_i) = \beta_i \in \mathbb{R}$. Show that $f = \sum_{i \in I} \beta_i v_i^*$.

Conclude that the set $(v_i^*)_{i \in I}$ form a basis of V^* . (10 pts.)

5f. Assume *V* is infinite dimensional. Define $f: V \to \mathbb{R}$ as follows:

For
$$v \in V$$
, if $v = \sum_{i \in I} \alpha_i v_i$, then $f(v) = \sum_{i \in I} \alpha_i$.

Show that *f* is not in the subspace of V^* generated by $(v_i^*)_{i \in I}$. (10 pts.)