Linear Algebra Resit September 1999 Ali Nesin

1. Let $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$. We know (from calculus) that *V* is a vector space over \mathbb{R} . Show that the set $(\sin^n x)_n$ is a linearly independent subset of *V*. (10 pts.)

2. Show that $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$ as vector spaces over \mathbb{Q} . (5 pts.)

3. Let V be a vector space and W a subspace of V. Show that W has a complement in V (i.e. a subspace W_1 of V such that $V = W + W_1$ and $W \cap W_1 = \{0\}$). (10 pts.)

4. Let *V* be a vector space over a field *K*. Let $f \in \text{End}_{K}(V)$ be such that $f \circ f = f$.

4a. Show that $v - f(v) \in \text{Ker}(f)$ for all $v \in V$. (1 pt.)

4b. Show that $Ker(f) \cap Im(f) = \{0\}$. (3 pts.)

4c. Show that $V \approx \text{Ker}(f) \times \text{Im}(f)$ (8 pts.)

4b. Show that f is the identity map on Im(f) and that it is the zero map on Ker(f). (2 pts.)

5. Recall that $GL_n(\mathbf{F}_q)$ is the group of invertible $n \times n$ matrices over the field \mathbf{F}_q , $SL_n(\mathbf{F}_q)$ is the group of $n \times n$ matrices of determinant 1 over the field \mathbf{F}_q , $PGL_n(\mathbf{F}_q) = GL_n(\mathbf{F}_q)/(\mathbf{F}_q^* \operatorname{Id}_n)$ and $PSL_n(\mathbf{F}_q) = SL_n(\mathbf{F}_q)/(\mathbf{F}_q^* \operatorname{Id}_n \cap SL_n(\mathbf{F}_q))$.

5a. Find the number of elements of $GL_n(\mathbf{F}_q)$, $SL_n(\mathbf{F}_q)$, $PGL_n(\mathbf{F}_q)$ and $PSL_n(\mathbf{F}_q)$. (10 pts.)

5b. Let *p* be a prime number. Does $PSL_n(\mathbf{F}_q)$ has an element of order *p*? (4 pts.)

5c. Assume n > 1 and that p divides q. Find an element of order p of $PSL_n(\mathbf{F}_q)$. (5 pts.)

6. Let $k \le K \le L$ be field extensions. Show that $\dim_k(L)$ is finite if and only if $\dim_k(K)$ and $\dim_K(L)$ are finite. Show that in that case we have $\dim_k(L) = \dim_k(K)\dim_K(L)$. (10 pts.)

7a. Let *A* be an abelian group of prime exponent *p*. Show that *A* is, in a natural way, a vector space over \mathbf{F}_{p} . (10 pts.)

7b. Show that, up to isomorphism, there is a unique abelian group of prime exponent of a given cardinality. (5 pts.)

8a. Let *A* be a torsion-free divisible abelian group. Show that *A* is, in a natural way, a vector space over \mathbb{Q} . (10 pts.)

8b. Show that, up to isomorphism, there is a unique torsion-free divisible abelian group of a given infinite cardinality. (5 pts.)