Linear Algebra

Resit
September 1999
Ali Nesin

1. Find

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}
$$

2. Find

$$
\left(\begin{array}{rrr}
3 & 2 & 0 \\
-1 & 0 & 0 \\
-1 & -1 & 1
\end{array}\right)^{n}
$$

for $n \in \mathbf{Z}$.
3. Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$. We know (from calculus) that V is a vector space over \mathbb{R}. Show that the set $\left(\sin ^{n} x\right)_{n}$ is a linearly independent subset of V.

4a. Is \mathbb{R} a vector space over \mathbb{Q} ?
4b. Is \mathbb{Q} a vector space over \mathbb{Z} ?
5. Let $V=\left\{(x, y, z, t, u) \in \mathbb{R}^{5}: x+y+z-t+u\right\}$. Let

$$
W=\{(x, y, z, t, u) \in V: 2 x-2 y+z-t+u=0 \text { and } 2 x-3 t=0\} .
$$

We know that V is a vector space over \mathbb{R} and that W is a subspace of V. Find a basis of V, W and V / W.
6. Let V be a vector space over a field K. Let $f \in \operatorname{End}_{K}(V)$ be such that $f \circ f=f$.

6a. Show that $v-f(v) \in \operatorname{Ker}(f)$ for all $v \in V$.
6b. Show that $\operatorname{Ker}(f) \cap \operatorname{Im}(f)=\{0\}$.
6c. Show that $V \approx \operatorname{Ker}(f) \times \operatorname{Im}(f)$
6b. Show that f is the identity map on $\operatorname{Im}(f)$ and that it is the zero map on $\operatorname{Ker}(f)$.
7. Recall that $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$ is the group of invertible $n \times n$ matrices over the field \mathbf{F}_{q}, $\mathrm{SL}_{n}\left(\mathbf{F}_{q}\right)$ is the group of $n \times n$ matrices of determinant 1 over the field $\mathbf{F}_{q}, \mathrm{PGL}_{n}\left(\mathbf{F}_{q}\right)=$ $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right) /\left(\mathbf{F}_{q}{ }^{*} \mathrm{Id}_{n}\right)$ and $\operatorname{PSL}_{n}\left(\mathbf{F}_{q}\right)=\mathrm{SL}_{n}\left(\mathbf{F}_{q}\right) /\left(\mathbf{F}_{q}{ }^{*} \mathrm{Id}_{n} \cap \operatorname{SL}_{n}\left(\mathbf{F}_{q}\right)\right)$.

7a. Find the number of elements of $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right), \mathrm{SL}_{n}\left(\mathbf{F}_{q}\right), \mathrm{PGL}_{n}\left(\mathbf{F}_{q}\right)$ and $\mathrm{PSL}_{n}\left(\mathbf{F}_{q}\right)$.
7b. Let p be a prime number. Does $\operatorname{PSL}_{n}\left(\mathbf{F}_{q}\right)$ has an element of order p ?
7c. Assume $n>1$ and that p divides q. Find an element of order p of $\operatorname{PSL}_{n}\left(\mathbf{F}_{q}\right)$.

