Linear Algebra

Resit September 1999 Ali Nesin

1. Find

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 - 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

2. Find

$$\begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ -1 -1 & 1 \end{pmatrix}^n$$

for $n \in \mathbb{Z}$.

3. Let $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$. We know (from calculus) that *V* is a vector space over \mathbb{R} . Show that the set $(\sin^n x)_n$ is a linearly independent subset of *V*.

4a. Is ℝ a vector space over ℚ?
4b. Is ℚ a vector space over ℤ?

5. Let
$$V = \{(x, y, z, t, u) \in \mathbb{R}^5 : x + y + z - t + u\}$$
. Let
 $W = \{(x, y, z, t, u) \in V : 2x - 2y + z - t + u = 0 \text{ and } 2x - 3t = 0\}.$

We know that V is a vector space over \mathbb{R} and that W is a subspace of V. Find a basis of V, W and V/W.

6. Let *V* be a vector space over a field *K*. Let $f \in \text{End}_{K}(V)$ be such that $f \circ f = f$. **6a.** Show that $v - f(v) \in \text{Ker}(f)$ for all $v \in V$. **6b.** Show that $\text{Ker}(f) \cap \text{Im}(f) = \{0\}$. **6c.** Show that $V \approx \text{Ker}(f) \times \text{Im}(f)$ **6b.** Show that *f* is the identity map on Im(f) and that it is the zero map on Ker(f).

7. Recall that $GL_n(\mathbf{F}_q)$ is the group of invertible $n \times n$ matrices over the field \mathbf{F}_q , $SL_n(\mathbf{F}_q)$ is the group of $n \times n$ matrices of determinant 1 over the field \mathbf{F}_q , $PGL_n(\mathbf{F}_q) = GL_n(\mathbf{F}_q)/(\mathbf{F}_q^* \operatorname{Id}_n)$ and $PSL_n(\mathbf{F}_q) = SL_n(\mathbf{F}_q)/(\mathbf{F}_q^* \operatorname{Id}_n \cap SL_n(\mathbf{F}_q))$.

7a. Find the number of elements of $GL_n(\mathbf{F}_q)$, $SL_n(\mathbf{F}_q)$, $PGL_n(\mathbf{F}_q)$ and $PSL_n(\mathbf{F}_q)$. **7b.** Let *p* be a prime number. Does $PSL_n(\mathbf{F}_q)$ has an element of order *p*?

7c. Assume n > 1 and that p divides q. Find an element of order p of $PSL_n(\mathbf{F}_q)$.