Well-Ordered Sets, Ordinals and Cardinals

Ali Nesin¹ July 2001

Definitions. A set together with a binary relation < is called a **partially ordered** set (poset in short) if

 $\forall x \neg (x < x)$ $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$

If in a poset any two elements can be compared, i.e. if

 $\forall x \; \forall y \; x < y \lor x = y \lor y < x$

then we say that the set is **totally ordered**.

If every nonempty subset of a totally ordered set has a least element, then we say that the set is **well-ordered**.

Note that every nonempty well-ordered set has a least element, but not necessarily a largest element.

Examples.

- 1. Any natural number *n* and the set \mathbb{N} (or ω) are well-ordered sets, on the other hand, \mathbb{Z} , \mathbb{Q} and \mathbb{R} are not well-ordered with respect to their natural order.
- 2. If X is a well-ordered set and ∞ is a new element not in X, by putting the element ∞ to the very end of X we obtain a new well-ordered set X ∪ {∞}. If x ∉ x, one usually takes x as the new element². In that case we set X⁺ = X ∪ {X}. Note that X⁺ has a largest element, namely X. Since ω ∉ ω, starting from ω, this gives us new well-ordered sets.
- 3. Any subset of a well-ordered set is also well-ordered by the induced order.
- 4. Let *X* and *Y* be two well-ordered sets. Order the set $(X \times \{0\}) \cup (Y \times \{1\})$ as follows: For all *x*, $x_1, x_2 \in X$ and for all *y*, $y_1, y_2 \in Y$
 - $(x_1, 0) < (x_2, 0)$ iff $x_1 < x_2$.
 - $(y_1, 1) < (y_2, 1)$ iff $y_1 < y_2$.
 - (x, 0) < (y, 1).
 - This is a well-order. We may denote this well-ordered set by X + Y.
- 5. Let *X* and *Y* be two well-ordered sets. Order the set $X \times Y$ as follows:
 - (a, b) < (a', b') iff either b < b' or (b = b' and a < a').

This is a well-order. We may denote this well-ordered set by $X \times Y$ or simply by XY.

Remarks. Let *X* be a well-ordered set.

- 1. For $x \in X$, we set $s(x) = \{y \in X : y < x\}$. A subset *A* of a well-ordered set *X* is called an **initial segment** if for $a \in A$, $s(a) \subseteq A$. Note that s(x) is always an initial segment and all initial segments except *X* are of this form, in other words, *x* is the least element of $X \setminus s(x)$.
- 2. If $x \in X$ is not the largest element, then the least element of $\{y \in X : x < y\}$ is the immediate successor of *x*. Thus in a well-ordered set, every element,

¹ Mainly from Suppes, Axiomatic Set Theory.

² The **Axiom of Regularity** states that no set is its own element.

except may be the last one, has an immediate successor. But not every element has an immediate predecessor.

- 3. If every countable subset of a totally ordered set *X* is well-ordered, then *X* is well-ordered.
- 4. $\omega^{+} + \omega^{+} = (\omega 2)^{+}$.
- 5. $2\omega = \omega$. More generally $n\omega = \omega$ for n > 0.

Transfinite Induction. Let X be a well-ordered set and $A \subseteq X$. Assume that for any element x of X, $x \in A$ whenever $s(x) \subseteq A$. Then A = X.

Proof. Assume $A \neq X$. Let x be the least element of $X \setminus A$. Then $s(x) \subseteq A$. Hence $x \in A$, a contradiction. QED

Definition. An ordinal is a well-ordered set α such that $\beta = s(\beta)$ for all $\beta \in \alpha$.

Remarks.

- 1. Every element of an ordinal is the set of its predecessors and is an ordinal itself. Thus every element of an ordinal is also a subset of this ordinal. But not every subset of an ordinal is an ordinal. On the other hand, every initial segment of an ordinal is an ordinal.
- 2. An ordinal is a set α well-ordered by the relation \in , i.e. the binary relation < on α defined by " $\beta < \gamma$ iff $\beta \in \gamma$ " well-orders α .
- 3. The least element of an ordinal is 0, because if *o* is the least element of an ordinal, $o = s(o) = \emptyset = 0$. The second element is necessarily 1 because if *x* is the second element, then, $x = s(x) = \{0\} = 1$. The third element must be 2, etc.
- 4. If α is an ordinal, then $\alpha \notin \alpha$, because otherwise, since $\alpha \in \alpha$, $\alpha \in \alpha = s(\alpha)$ and $\alpha < \alpha$, contradicting the fact that an ordinal is a poset. Thus α^+ is also an ordinal where α is the largest element.
- 5. If α is an ordinal and $\beta \in \alpha$, then either $\beta^+ \in \alpha$ or $\beta^+ = \alpha$.
- 6. If α and β are ordinals and $\beta \subset \alpha$, then $\beta \in \alpha$ and β is an initial segment of α .
- 7. For any two ordinals α and β , either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. Thus every set of ordinals is well-ordered by the membership relation and the union of a set of ordinals is an ordinal.
- 8. If two ordinals α and β are isomorphic as well-ordered sets, then $\alpha = \beta$.
- 9. Every well-ordered set is isomorphic to a unique ordinal.
- 10. Let α be an ordinal and $X \subseteq \alpha$. Then the set $\{y \in \alpha : y \in x \text{ for some } x \in X\}$ is also an ordinal.

A nonzero ordinal λ is called a **limit ordinal** if it has no predecessor, i.e. if there is no α such that $\alpha^+ = \lambda$.

Remarks.

1. ω is the first limit ordinal.

2. A limit ordinal is its own union. On the other hand the union of α^+ is only α . Thus a nonzero ordinal is a limit ordinal iff it is equal to the union of its elements.

Transfinite Induction. *Let* α *be an ordinal. Let* $A \subseteq \alpha$ *be such that*

i) $0 \in A$, ii) if $\beta \in A$ then $\beta^+ \in A$, iii) If $\gamma \in A$ for all elements γ of a limit ordinal $\beta \in \alpha$ then $\beta \in A$. Then $A = \alpha$.

Definition. We define the addition of ordinals as follows:

 $\begin{aligned} \alpha + 0 &= \alpha \\ \alpha + \beta^+ &= (\alpha + \beta)^+ \\ \alpha + \lambda &= \bigcup_{\beta < \lambda} \alpha + \beta \text{ if } \lambda \text{ is a limit ordinal} \end{aligned}$

Remarks.

- 1. $\alpha + \beta$ is an ordinal.
- 2. $\alpha + 1 = \alpha + 0^+ = (\alpha + 0)^+ = \alpha^+$.
- 3. The addition coincides with the usual addition on ω .
- 4. $n + \omega = \omega$ for $n \in \omega$.
- 5. $0 + \alpha = \alpha$.
- 6. If $\beta < \gamma$ then $\alpha + \beta < \alpha + \gamma$. (On the other hand, $1 + \omega = 2 + \omega$). Thus if $\alpha + \beta = \alpha + \gamma$ then $\beta = \gamma$.
- 7. If $\alpha \leq \beta$ then $\alpha + \gamma \leq \beta + \gamma$. Thus $\beta \leq \alpha + \beta$.
- 8. If λ is a limit ordinal, then so is $\alpha + \lambda$. Does the converse hold?
- 9. $\omega + \omega$ is the second limit ordinal.
- 10. If $\alpha \leq \beta$ then there is a unique γ such that $\alpha + \gamma = \beta$.
- 11. $\alpha + \beta$ is the first ordinal greater than $\alpha + \delta$ for all $\delta < \beta$.
- 12. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- 13. $(\omega + n) + (\omega + m) = (\omega + \omega) + m$

Definition. We define the multiplication of ordinals as follows:

$$\alpha \times 0 = 0$$

$$\alpha \times \beta^{+} = (\alpha \times \beta) + \alpha$$

$$\alpha \times \lambda = \bigcup_{\beta < \lambda} \alpha \times \beta \text{ if } \lambda \text{ is a limit ordinal}$$

Remarks.

- 1. We may write $\alpha\beta$ for $\alpha \times \beta$.
- 2. $\alpha\beta$ is an ordinal.
- 3. The multiplication of natural numbers corresponds to the usual multiplication.
- 4. $0\alpha = 0$.
- 5. $\alpha 1 = 1\alpha = \alpha$.
- 6. $\alpha 2 = \alpha + \alpha$, but $2\omega = \omega \neq \omega + \omega$. In general $n\omega = \omega$.
- 7. $n(\omega + m) = \omega + nm$.
- 8. $(\omega + 1)2 = \omega 2 + 1$
- 9. If $\alpha > 0$ and $\beta < \gamma$ then $\alpha\beta < \alpha\gamma$. In particular if $\alpha \neq 0$ and $\beta \neq 0$ then $\alpha\beta \neq 0$ and if $\alpha\beta = \alpha\gamma$ and $\alpha \neq 0$ then $\beta = \gamma$.
- 10. If $\alpha > 0$ and β is a limit ordinal, then $\alpha\beta$ and $\beta\alpha$ are limit ordinals.
- 11. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$. On the other hand, $1\omega + 1\omega = \omega + \omega \neq \omega = 2\omega = (1 + 1)\omega$.

- 12. $\alpha(\beta\gamma) = (\alpha\beta)\gamma$
- 13. If $\alpha\beta < \alpha\gamma$ and $\alpha \neq 0$ then $\beta < \gamma$.
- 14. If $\beta \alpha < \gamma \alpha$ and $\alpha \neq 0$ then $\beta < \gamma$.
- 15. If γ is a limit ordinal then $n\gamma = \gamma$ for n > 0.
- 16. If $\gamma < \alpha\beta$ then there is a unique $\alpha_1 < \alpha$ and a unique $\beta_1 < \beta$ such that $\gamma = \beta_1 < \beta_2$ $\alpha\beta_1 + \alpha_1$.
- 17. If $\alpha \neq 0$ then for any β there is a unique γ and a unique $\delta < \alpha$ such that $\beta =$ $\alpha\gamma + \delta$.
- 18. If α is a limit ordinal then there is a unique β such that $\alpha = \omega\beta$.

Definition: We define the exponentiation of ordinals as follows:

 $\alpha^0 = 1$ $\alpha^{\beta+1} = \alpha^{\beta} \alpha$ $\alpha^{\lambda} = \bigcup \alpha^{\beta}$ if λ is a limit ordinal and $\alpha \neq 0$ β<λ $0^{\lambda} = 0$ if λ is a limit ordinal.

Remarks.

- 1. α^{β} is an ordinal.
- 2. Exponention coincides with the usual one on ω .
- 3. $1^{\alpha} = 1$.
- 4. $2^{\omega} = \omega$. More generally $n^{\omega} = \omega$ if $n \ge 2$.
- 5. $\omega < \omega^2 < \omega^3 < \dots < \omega^{\omega}$.
- 6. $\alpha^2 = \alpha \alpha, \alpha^3 = \alpha \alpha \alpha$, etc.
- 7. $\alpha^{\beta+\gamma} = \alpha^{\beta} \alpha^{\gamma}$.
- 8. $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$. On the other hand $(\omega 2)^2 \neq \omega^2 2^2$.
- 9. $2^{(\omega^{n+1})} = \omega^{(\omega^n)}$.
- 10. If $\alpha > 1$ and $\beta < \gamma$ then $\alpha^{\beta} < \alpha^{\gamma}$.
- 11. If $\alpha > 1$ and $\beta > 1$ then $\alpha + \beta \le \alpha\beta \le \alpha^{\beta}$.
- 12. (Sierpinski 1950) For any ordinal number $\mu \ge 1$ there are α , β , γ such that $\alpha^{\mu} + \beta^{\mu} = \gamma^{\mu}$. Indeed, if μ is not a limit ordinal, then for $\xi \ge 1$, $(\omega^{\xi})^{\mu} + (\omega^{\xi}2)^{\mu} = (\omega^{\xi}3)^{\mu}$. And if μ is a limit ordinal, then for $\xi \ge 1$.

And if
$$\mu$$
 is a limit ordinal, then for $\xi \ge 1$,
 $(\omega^{\xi})^{\mu} + (\omega^{\xi\mu})^{\mu} = (\omega^{\xi\mu} + 1)^{\mu}$.

Definition. An ordinal which is not in bijection with one of its elements is called a cardinal (number).

Remarks.

- 1. Each natural number and ω are cardinals. $\omega + n$ is not an ordinal for n > 0. $\omega + \omega$ and ω^{ω} are not cardinals neither.
- 2. Cardinals which are not natural numbers are necessarily limit ordinals. But not every limit ordinal is a cardinal.

If α is an infinite cardinal, then $\alpha \alpha = \alpha$.

7. The purpose of this exercise is to show that there is an uncountable family of subsets of N such that any two subsets of the family intersect in a finite set.

We know that **Q** is countable. Let $(a_n)_{n \in \mathbb{N}}$ be an enumeration of **Q** by natural numbers.

7a. Show that for every $r \in \mathbb{R}$, there is a strictly increasing subsequence of $(a_n)_{n \in \mathbb{N}}$ that converges to r.

7b. Show that there is a set **S** of strictly increasing Cauchy subsequences of $(a_n)_{n \in \mathbb{N}}$ such that for every $r \in \mathbb{R}$, there is a unique element of **S** that converges to *r*.

Call this subsequence $s_r = (a_{n(r)})_{n(r)}$. Let I(r) be the set of n(r). Note that I(r) is an infinite subset of \mathbb{N} .

7c. Show that for two distinct real numbers $r, r', I(r) \cap I(r')$ is finite.

7d. Deduce that there is an uncountable family of subsets of \mathbb{N} whose two by two intersections are finite.