Quiz Set Theory (Math 111) May 5th,1999

Ali Nesin – Özlem Beyarslan

General Hint: Draw pictures.

Recall that a set *X* together with a binary relation < is called **well-ordered** if the following conditions are satisfied:

- i) For all $x, y, z \in X$, if x < y and y < z then x < z.
- ii) For all $x \in X$, $\neg (x < x)$.
- iii) For all $x, y \in X$, either x < y or x = y or y < x.
- iv) Every nonempty subset of *X* has a least element.

A set is called **well-orderable** if there is a binary relation < that well-orders *X*.

I. Let X be a set well-ordered by the binary relation <. Let $x \in X$ and define [0, x) to be the subset $\{y \in X: y < x\}$ of X. Consider the following property of a subset Y of X:

For all $a \in Y$, if b < a then $b \in Y$. (*)

Show that a subset *Y* of *X* satisfies (*) and $Y \neq X$ if and only if Y = [0, x) for some $x \in X$.

- **II.** Let *X* be a well-orderable set. Let *Y* be any subset of *X*. Show that *Y* is also well-orderable.
- **III.** Let *X* be a well-orderable set. Let *Y* be any set. Show that if there is a one-to-one mapping from *Y* into *X* then *Y* is also well-orderable.
- **IV.** Is it true that every nonempty subset of a well-ordered set has a greatest element?
- V. Let *X* be a set well-ordered by the relation <. Let $y \notin X$ and $Y = X \cup \{y\}$. Define a binary relation <' on *Y* by

 $a \lt' b$ iff $a \in X \land ((b \in X \land a \lt b) \lor b = y)$.

Va. Show that <' well-orders *Y*.

Vb. Show that *Y* has a greatest element.

- VI. Let the binary relation < well-order the set *X*. Let $\pi: X \to X$ be an orderpreserving function, i.e. a function such that for all $x, y \in X, x < y$ iff $\pi(x) < \pi(y)$. Show that for all $x \in X, x \le \pi(x)$ (i.e. either $x < \pi(x)$ or $x = \pi(x)$).
- **VII.** Is it true that an order preserving map is always one-to-one?
- **VIII.** Let the binary relation < well-order the set *X* and let $x \in X$. Let Z = [0, x). Show that there is no order-preserving onto map from *X* into *Z*.
- **IX.** Let the binary relation < well-order the set *X*. Let $\varphi(x)$ be a formula. Assume that,

For every $x \in X$, if $\varphi(y)$ for every y < x, then $\varphi(x)$.

Show that,

For every
$$x \in X$$
, $\varphi(x)$.