Quiz

Set Theory (Math 111)
May $5^{\text {th }}, 1999$
Ali Nesin - Özlem Beyarslan
General Hint: Draw pictures.
Recall that a set X together with a binary relation < is called well-ordered if the following conditions are satisfied:
i) For all $x, y, z \in X$, if $x<y$ and $y<z$ then $x<z$.
ii) For all $x \in X, \neg(x<x)$.
iii) For all $x, y \in X$, either $x<y$ or $x=y$ or $y<x$.
iv) Every nonempty subset of X has a least element.

A set is called well-orderable if there is a binary relation < that well-orders X.
I. Let X be a set well-ordered by the binary relation $<$. Let $x \in X$ and define $[0, x)$ to be the subset $\{y \in X: y<x\}$ of X. Consider the following property of a subset Y of X :

$$
\begin{equation*}
\text { For all } a \in Y \text {, if } b<a \text { then } b \in Y \text {. } \tag{*}
\end{equation*}
$$

Show that a subset Y of X satisfies $\left(^{*}\right)$ and $Y \neq X$ if and only if $Y=[0, x)$
for some $x \in X$.
II. Let X be a well-orderable set. Let Y be any subset of X. Show that Y is also well-orderable.
III. Let X be a well-orderable set. Let Y be any set. Show that if there is a one-to-one mapping from Y into X then Y is also well-orderable.
IV. Is it true that every nonempty subset of a well-ordered set has a greatest element?
V. Let X be a set well-ordered by the relation $<$. Let $y \notin X$ and $Y=X \cup\{y\}$. Define a binary relation $<^{\prime}$ on Y by

$$
a<^{\prime} b \text { iff } a \in X \wedge((b \in \mathrm{X} \wedge a<b) \vee b=y) .
$$

Va. Show that < well-orders Y.
Vb. Show that Y has a greatest element.
VI. Let the binary relation < well-order the set X. Let $\pi: X \rightarrow X$ be an orderpreserving function, i.e. a function such that for all $x, y \in X, x<y$ iff $\pi(x)<\pi(y)$. Show that for all $x \in X, x \leq \pi(x)$ (i.e. either $x<\pi(x)$ or $x=$ $\pi(x)$).
VII. Is it true that an order preserving map is always one-to-one?
VIII. Let the binary relation $<$ well-order the set X and let $x \in X$. Let $Z=[0$, x). Show that there is no order-preserving onto map from X into Z.
IX. Let the binary relation < well-order the set X. Let $\varphi(x)$ be a formula. Assume that,

For every $x \in X$, if $\varphi(y)$ for every $y<x$, then $\varphi(x)$.
Show that,

$$
\text { For every } x \in X, \varphi(x) \text {. }
$$

