Algebra (Math 211) Resit

Ali Nesin

March 3rd, 2003

Throughout G stands for a group.

1. Let $g \in G$ have order n and m an integer. What can you say about the order of g^{m} ? (5 pts .)
2. Let $H, K \leq G$. Show that $\{H x K: x \in G\}$ is a partition of G. (3 pts.)
3. Let $H \leq G$. Show that there is a natural one to one correspondence between the left coset space of H in G and the right coset space of H in G. (3 pts.)
4. Show that the product of two groups is divisible ${ }^{1}$ if and only if each factor is divisible. (4 pts.)
5. Show that if $G / Z(G)$ is cyclic then G is abelian. (5 pts .)
6. Find the torsion elements of
a) $\mathbb{Q} / \mathbb{Z} .(5 \mathrm{pts}$.
b) $\mathbb{R} / \mathbb{Q} .(5$ pts.)
7. Let $H, K \leq G$. Assume that for all $k \in K, H^{k} \leq H$. Show that $H^{k}=H$ for all $k \in K$. (5 pts .)
8. Find the isomorphism type of the group $(\mathbb{Z} / 11 \mathbb{Z})^{*}$. (5 pts .)
9. Find the isomorphism type of the group $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. (8 pts.)
10. Let p be a prime.
a. Find the group $\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})$. (5 pts.$)$
b. Find $|\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z})|$. (5 pts.)
11. Find $\operatorname{Aut}(\mathbb{Z})$. (5 pts.)
12. Find $\operatorname{Aut}(\mathbb{Q})$. (5 pts.)

[^0]13. Find $\operatorname{Aut}\left(\mathbb{Q}^{*}\right)$. (10 pts.)
14. Find $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$. (15 pts.)
15. Show that if G is centerless then there is an imbedding of G in $\operatorname{Aut}(G)$ (i.e. a one to one group homomorphism from G into $\operatorname{Aut}(G))$. (7 pts.)

[^0]: ${ }^{1}$ A group G is called divisible if for any $g \in G$ and any integer $n \geq n$ there is an $h \in G$ such that $g=h^{n}$.

