Second Midterm Math 111

January 1998 Ali Nesin

Notation: N denotes the set of natural numbers. \mathbb{Z} denotes the set of integers. \mathbb{R} denotes the set of real numbers. If X is a set, $\wp(X)$ denotes the set of subsets of X and Id_X denotes the identity map on X, i.e. $\mathrm{Id}_X(x) = x$ for all $x \in X$. The symbol $f \circ g$ denotes the composition of the functions f and g whenever it makes sense; thus $(f \circ g)(x) = f(g(x))$. The symbol f^2 denotes the function $f \circ f$ whenever it makes sense.

- **1.** Write all the elements of $\wp(\wp(\{1,2\}))$.
- **2.** Does the following sets have a maximal and a minimal element (for the inclusion)?
 - **a**) $\{x \in \wp(\mathbb{N}): 1 \in x, 2 \notin x\}$
 - **b**) $\{x \in \mathcal{D}(\mathbb{N}) : \exists n \in \mathbb{N} \ \forall m > n \ (m \notin x)\}$
 - c) $\{x \in \wp(\wp(\mathbb{N})): a \mathbb{N} \in \mathbf{x} \text{ for all } a \in \mathbb{N}\}$
 - **3.** Find all the bijections f of the set 4 for which $f^3 = \text{Id}_4$.
 - **4.** Find all the bijections $f: \mathbb{N} \to \mathbb{N}$ for which

$$x < y \Rightarrow f(x) < f(y)$$

for all $x, y \in \mathbb{N}$.

- **5.** Let $f: \mathbb{N} \to \mathbb{Z}$ be given by $f(x) = x x^2$ and $g: \mathbb{Z} \to \mathbb{R}$ be given by $g(x) = x/(1+x^2)$. Compute $(g \circ f)(3)$. For what values of x, does $(g \circ f)(x) \ge 0$?
- **6.** Let X be a set and $f: X \to X$ be a function such that f^2 is a bijection. Show that f is a bijection.
 - 7. Give an example of a nonconstant function $f: \mathbb{N} \to \mathbb{N}$ such that $f \neq \mathrm{Id}_{\mathbb{N}}$ and $f^2 = f$.
 - **8.** Show that for any nonzero natural number n,

$$\frac{1}{1}\frac{1}{3} + \frac{1}{3}\frac{1}{5} + \frac{1}{5}\frac{1}{7} + \dots + \frac{1}{2n-1}\frac{1}{2n+1} = \frac{n}{2n+1}$$

- **9.** Let A, B, C be three sets. Show that $(A \cap C) \setminus (B \cap C) \subseteq A \setminus B$.
- **10.** Let X be a set. A set Y is said to be a **choice set** for X, if for any $x \in X$ there is a unique element $y \in Y$ such that $y \in X$. Find a choice set for $X = \{\{0,1\},\{1,2\}\}$. Find a set X which has no choice function.