Math 121

Ali Nesin 6-November-1997

Definition: If *A* and *B* are two sets, $A \Delta B$ denotes $(A \cup B) \setminus (A \cap B)$.

1. Let *A*, *B*, *C* be three subsets of *X*. **a)** Show that $(A \cap C) \setminus (B \cap C) \subseteq A \setminus B$. **b)** Show that $(A \cup C) \setminus (B \cup C) \subseteq A \setminus B$. **c)** Show that $A^c \setminus B^c \subseteq B \setminus A$. **d)** Show that $(A \setminus C) \setminus (B \setminus C) \subseteq (A \setminus B)$. **e)** Show that $(A \setminus C) \setminus (A \setminus B) \subseteq (B \setminus C)$.

2. Let *X* be a set. For two subsets *A* and *B* of *X*, define the relation $A \equiv B$ by the condition " $A \Delta B$ is finite".

a) Show that this is an equivalence relation on $\wp(X)$. b) Show that $\wp(X)/\equiv$ has only one element if X is finite. c) Conversely show that if $\wp(X)/\equiv$ has only one element then X is finite. d) Show that $\wp(\mathbb{N})/\equiv$ is infinite. Show that for all A, B, A₁, B₁ \subseteq X, if $A \equiv A_1$ and $B \equiv B_1$, then e) $A \cap B \equiv A_1 \cap B$. (You may use 1a) f) $A \cap B \equiv A_1 \cap B_1$. (You may use 2e) g) $A \cup B \equiv A_1 \cup B$. (You may use 2b) h) $A \cup B \equiv A_1 \cup B_1$. (You may use 2g) i) $A^c \equiv A_1^c$. (You may use 1c) j) $A \setminus B \equiv A_1 \setminus B$ (You may use 1d) k) $A \setminus B \equiv A_1 \Delta B_1$ (You may use 2), k)

3) Everything is as above. Show that if $\wp(X)/\equiv$ is finite then X is finite and so $\wp(X)/\equiv$ has only one element. (Needs the Axiom of choice, unless the definition is the Dedekind finiteness.)