Math 121

Ali Nesin
6-November-1997
Definition: If A and B are two sets, $A \Delta B$ denotes $(A \cup B) \backslash(A \cap B)$.

1. Let A, B, C be three subsets of X.
a) Show that $(A \cap C) \backslash(B \cap C) \subseteq A \backslash B$.
b) Show that $(A \cup C) \backslash(B \cup C) \subseteq A \backslash B$.
c) Show that $A^{\mathrm{c}} \backslash B^{\mathrm{C}} \subseteq B \backslash A$.
d) Show that $(A \backslash C) \backslash(B \backslash C) \subseteq(A \backslash B)$.
e) Show that $(A \backslash C) \backslash(A \backslash B) \subseteq(B \backslash C)$.
2. Let X be a set. For two subsets A and B of X, define the relation $A \equiv B$ by the condition " $A \Delta B$ is finite".
a) Show that this is an equivalence relation on $\wp(X)$.
b) Show that $\wp(X) / \equiv$ has only one element if X is finite.
c) Conversely show that if $\wp(X) / \equiv$ has only one element then X is finite.
d) Show that $\wp(\mathbb{N}) / \equiv$ is infinite.

Show that for all $A, B, A_{1}, B_{1} \subseteq X$, if $A \equiv A_{1}$ and $B \equiv B_{1}$, then
e) $A \cap B \equiv A_{1} \cap B$. (You may use 1a)
f) $A \cap B \equiv A_{1} \cap B_{1}$. (You may use 2e)
g) $A \cup B \equiv A_{1} \cup B$. (You may use 1b)
h) $A \cup B \equiv A_{1} \cup B_{1}$. (You may use 2 g)
i) $A^{\mathrm{c}} \equiv A_{1}{ }^{\mathrm{c}}$. (You may use 1c)
j) $A \backslash B \equiv A_{1} \backslash B$ (You may use 1d)
k) $A \backslash B \equiv A \backslash B_{1}$ (You may use 1e)
l) $A \Delta B \equiv A_{1} \Delta B_{1}$ (You may use $2 \mathrm{j}, \mathrm{k}$)
3) Everything is as above. Show that if $\wp(X) / \equiv$ is finite then X is finite and so $\wp(X) / \equiv$ has only one element. (Needs the Axiom of choice, unless the definition is the Dedekind finiteness.)

