Set Theory Quiz

Math 111
31 Ekim 1997
Ali Nesin
I. Let X be a set. Show that there is a set whose elements are 2-element subsets of X.
II. Let X be a set and $S \subseteq \wp(X)$. Show that there is a set whose elements are intersections of two distinct elements of S.
III. Let X be a set. A subset \boldsymbol{T} of $\wp(X)$ is called a topology on X, if
a) $\varnothing \in T, X \in T$,
b) If $U, V \in T$, then $U \cap V \in T$,
c) If $\boldsymbol{S} \subseteq \boldsymbol{T}$, then $\cup \boldsymbol{S} \in \boldsymbol{T}$.

1) Show that $\{\varnothing, X\}$ is a topology on X.
2) Show that $\wp(X)$ is a topology on X.
3) Let $A \subseteq X$ be a subset of X. Show that $\{\varnothing, A, X\}$ is a topology on X.
4) Let A and B be two subsets of X. Find a finite topology on X that contains A and B.
5) Show that if \boldsymbol{S} and \boldsymbol{T} are topologies on X, then $\mathbf{S} \cap \boldsymbol{T}$ is also a topology on X.
6) Show that if Σ is a set of topologies on X, then $\cap \Sigma$ is also a topology on X.
7) Show that if $S \subseteq \wp(X)$, then the intersection $\boldsymbol{T}(S)$ of all topologies that contains S is the smallest topology on X that contains S.
