Set Theory Quiz Math 111 31 Ekim 1997 Ali Nesin

I. Let *X* be a set. Show that there is a set whose elements are 2-element subsets of *X*.

II. Let X be a set and $S \subseteq \wp(X)$. Show that there is a set whose elements are intersections of two distinct elements of S.

III. Let X be a set. A subset T of ℘(X) is called a topology on X, if a) Ø ∈ T, X ∈ T,
b) If U, V ∈ T, then U ∩ V ∈ T,
c) If S ⊆ T, then ∪S ∈ T.
1) Show that {Ø, X} is a topology on X.

2) Show that $\wp(X)$ is a topology on X.

3) Let $A \subseteq X$ be a subset of *X*. Show that $\{\emptyset, A, X\}$ is a topology on *X*.

4) Let A and B be two subsets of X. Find a finite topology on X that contains A and

В.

5) Show that if S and T are topologies on X, then $S \cap T$ is also a topology on X.

6) Show that if Σ is a set of topologies on *X*, then $\cap \Sigma$ is also a topology on *X*.

7) Show that if $S \subseteq \wp(X)$, then the intersection T(S) of all topologies that contains S is the smallest topology on X that contains S.