Set Theory (Orders)

December 2005
Ali Nesin

Recall that a preorder on a nonempty set X is a subset A of $X \times X$ such that
a) For any $x \in X,(x, x) \notin A$.
b) For any $x, y, z \in X$, if $(x, y) \in A$ and $(y, z) \in A$, then $(x, z) \in A$.

If A is a preorder on a set X, instead of " $(x, y) \in A$ " one often writes $x A y$, and in this case we say that (X, A) is a preorder. Instead of A, it is customary to use a more common symbol such as $<$ or \prec.

Let $(X,<)$ and (Y, \prec) be two preorders. A morphism from $(X,<)$ into (Y, \prec) is a map f from X into Y such that for any $x_{1}, x_{2} \in X, x_{1}<x_{2}$ iff $f\left(x_{1}\right) \prec f\left(x_{2}\right)$.

1. Show that a morphism is necessarily one-to-one.
2. Show that the composition of morphisms is a morphism.

A morphism f from $(X,<)$ into (Y, \prec) is called an isomorphism if the map is onto. The identity map is clearly an isomorphism.
3. Show that if f is an isomorphism from $(X,<)$ into (Y, \prec) then f^{-1} is an isomorphism from (Y, \prec) into $(X,<)$ is an isomorphism.

If there is an isomorphism between the preorders $(X,<)$ and (Y, \prec) they are said to be isomorphic.
4. How many nonisomorphic preorders are there on a set of three elements?
5. How many nonisomorphic preorders are there on a set of four elements?
6. Let $\sigma \in \operatorname{Sym}(B)$. Show that σ gives rise (naturally) to an automorphism of the preorder $(\wp \mathcal{}(B), \subset)$. Conversely, show that every automorphism of the preorder ($\wp(B)$, $\subset)$ is of this form.

An automorphism of a preorder is an isomorphism from the preorder into itself.
7. Find all the automorphisms of the following preorder

8. Find all the automorphisms of the following preorder

A total order is an order where any two elements are comparable, i.e. for any x, y $\in X$, either $x<y$ or $x=y$ or $y<x$ (only one of the three relations may hold). For example, the natural orders on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} are total orders.
9. Show that any two total orders on a finite set X are isomorphic.
10. Find all the automorphisms of $(\mathbb{N},<)$. Here $<$ is the usual ordering on \mathbb{N}.
11. Find all the automorphisms of $(\mathbb{Z},<)$. Here $<$ is the usual ordering on \mathbb{Z}.
12. Show that the usual total orders $(\mathbb{N},<)$ and $(\mathbb{N} \backslash\{0\},<)$ are isomorphic.
13. Show that the usual total orders $(\mathbb{Z},<)$ and $(\mathbb{Z} \backslash\{5\},<)$ are isomorphic.
14. Show that the usual total orders $(\mathbb{N},<)$ and $(\mathbb{Z},<)$ are not isomorphic.
15. Define a total order on the set $\mathbb{N} \cup\{\infty\}$ by extending the usual total order of \mathbb{N} by adding $n<\infty$ for all $n \in \mathbb{N}$. Show that $(\mathbb{N} \cup\{\infty\},<)$ and $(\mathbb{N},<)$ are not isomorphic.

