Set Theory (Orders)

December 2005 Ali Nesin

Recall that a **preorder** on a nonempty set X is a subset A of $X \times X$ such that

- a) For any $x \in X$, $(x, x) \notin A$.
- b) For any $x, y, z \in X$, if $(x, y) \in A$ and $(y, z) \in A$, then $(x, z) \in A$.

If A is a preorder on a set X, instead of " $(x, y) \in A$ " one often writes xAy, and in this case we say that (X, A) is a preorder. Instead of A, it is customary to use a more common symbol such as < or <.

Let (X, <) and (Y, <) be two preorders. A **morphism** from (X, <) into (Y, <) is a map f from X into Y such that for any $x_1, x_2 \in X$, $x_1 < x_2$ iff $f(x_1) < f(x_2)$.

- **1.** Show that a morphism is necessarily one-to-one.
- **2.** Show that the composition of morphisms is a morphism.

A morphism f from (X, <) into (Y, <) is called an **isomorphism** if the map is onto. The identity map is clearly an isomorphism.

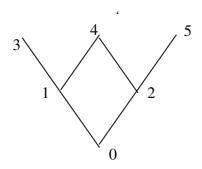
3. Show that if f is an isomorphism from (X, <) into (Y, <) then f^{-1} is an isomorphism from (Y, <) into (X, <) is an isomorphism.

If there is an isomorphism between the preorders (X, <) and (Y, <) they are said to be **isomorphic**.

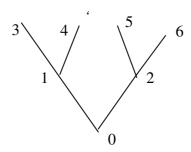
- **4.** How many nonisomorphic preorders are there on a set of three elements?
- **5.** How many nonisomorphic preorders are there on a set of four elements?
- **6.** Let $\sigma \in \text{Sym}(B)$. Show that σ gives rise (naturally) to an automorphism of the preorder $(\mathcal{P}(B), \subset)$. Conversely, show that every automorphism of the preorder $(\mathcal{P}(B), \subset)$ is of this form.

An **automorphism** of a preorder is an isomorphism from the preorder into itself.

7. Find all the automorphisms of the following preorder



8. Find all the automorphisms of the following preorder



A **total order** is an order where any two elements are comparable, i.e. for any x, $y \in X$, either x < y or x = y or y < x (only one of the three relations may hold). For example, the natural orders on \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} are total orders.

- **9.** Show that any two total orders on a finite set *X* are isomorphic.
- **10.** Find all the automorphisms of $(\mathbb{N}, <)$. Here < is the usual ordering on \mathbb{N} .
- **11.** Find all the automorphisms of $(\mathbb{Z}, <)$. Here < is the usual ordering on \mathbb{Z} .
- **12.** Show that the usual total orders $(\mathbb{N}, <)$ and $(\mathbb{N} \setminus \{0\}, <)$ are isomorphic.
- **13.** Show that the usual total orders $(\mathbb{Z}, <)$ and $(\mathbb{Z} \setminus \{5\}, <)$ are isomorphic.
- **14.** Show that the usual total orders $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$ are not isomorphic.
- **15.** Define a total order on the set $\mathbb{N} \cup \{\infty\}$ by extending the usual total order of \mathbb{N} by adding $n < \infty$ for all $n \in \mathbb{N}$. Show that $(\mathbb{N} \cup \{\infty\}, <)$ and $(\mathbb{N}, <)$ are not isomorphic.