Math 111 Fall 2005 Final Ali Nesin

0a. Show that for any natural number m if $n \in m$ then $n \subseteq m$. (4 pts.) **Proof:** By induction on m.

If $m = 0 = \emptyset$, there is no such *n*, so this case is trivial.

Assume the statement for *m* and let $n \in m + 1 = m \cup \{m\}$. Then either $n \in m$ or n = m. In the first case $n \subseteq m$ by induction. Thus in both cases $n \subseteq m$. Hence $n \subseteq m \subseteq m \cup \{m\} = m + 1$.

0b. Show that for any natural number $n, n \notin n$. (4 pts.)

Proof: Clearly $0 \notin \emptyset = 0$. Assume $n \notin n$. If $n + 1 \in n + 1 = n \cup \{n\}$, then $n + 1 \in n$ or n + 1 = n. In both cases $n + 1 \subseteq n$. Thus $n \cup \{n\} \subseteq n$. Hence $n \in n$, a contradiction.

0c. Let ω be the set of natural numbers. Show that $\omega \neq n$ for any $n \in \omega$. (3 pts.) **Proof:** By induction on *n*. If $n = 0 = \emptyset$, since $0 = \emptyset \in \omega$, clearly $\omega \neq 0$. Assume $n \neq \omega$ but that $n + 1 = \omega$. Then $n + 1 \in \omega = n + 1$, contradicting 0b.

0d. Show that $\omega \notin \omega$. (2 pts.) **Proof:** Assume $\omega \in \omega$. Then $\omega = n$ for some $n \in \omega$. Contradicting 0c.

0e. Let $\omega + 1 = \omega \cup \{\omega\}$. Show that $\omega + 1 \notin \omega + 1$ (3 pts.) **Proof:** Assume $\omega + 1 \in \omega + 1 = \omega \cup \{\omega\}$. Then either $\omega + 1 \in \omega$ or $\omega + 1 = \omega$, i.e. either $\omega \cup \{\omega\} \in \omega$ or $\omega \cup \{\omega\} = \omega$. In both cases $\omega \in \omega$, contradicting 0d.

1. A set X is called \in -complete if every element of X is a subset of X. **1a.** Show that a set X is \in -complete if and only if $\cup X \subseteq X$. (2 pts.) **Proof:** (\Rightarrow) Let $a \in \cup X$. Then there is a $b \in X$ such that $a \in b$. Since X is \in complete, $b \subseteq X$. Thus $a \in b \subseteq X$ and so $a \in X$. (\Leftarrow) Let $a \in X$. Then $a \subseteq \cup X \subseteq X$.

1b. Show that if X is complete, then $X \cup \{X\}$ is \in -complete. (3 pts.) **Proof:** $\cup (X \cup \{X\}) = \bigcup_{x \in X \cup \{X\}} x = (\bigcup_{x \in X} x) \cup X = (\bigcup X) \cup X = X.$

1c. *Give infinitely many examples of* \in *-complete sets.* (2 pts.)

Answer: Every natural number is an \in -complete set. We can prove this by induction on $n \in \mathbb{N}$ by using 1b.

1d. Show that if A is a set of \in -complete sets, then $\cap A$ and $\cup A$ are also complete. (2 pts.)

Proof: Let $x \in \cap A$. Then $x \in y$ for any $y \in A$. But y is \in -complete, so $x \subseteq y$ for any $y \in A$. Thus $x \subseteq \cap A$.

Let $x \in \bigcup A$. Then $x \in y$ for some $y \in A$. But y is \in -complete, so $x \subseteq y$. Thus $x \subseteq \bigcup A$.

1e. Assume $\{x\}$ is \in -complete. What can you say about x? (3 pts.)

Answer: Since x is the only element of $\{x\}$, $\{x\}$ is \in -complete if and only if $x \subseteq \{x\}$ if and only if $x = \emptyset$ or $x = \{x\}$ if and only if $x = \emptyset$ or $x \in x$.

1f. Let X be any set. Define $X_0 = X$ and $X_{n+1} = X_n \cup (\bigcup X_n)$ for any $n \in \mathbb{N}$. Let $X_0 = \bigcup_{n \in \mathbb{N}} X_n$. Assuming X_0 is a set, show that it is the smallest \in -complete set containing X. (8 pts.)

Proof: Remark first that $X = X_0 \subseteq X_1 \subseteq X_2 \subseteq ... \subseteq X_n \subseteq X_{n+1} \subseteq ... \subseteq X_{\omega}$.

Next we show that X_{ω} is \in -complete. Let $x \in X_{\omega}$. Then $x \in X_n$ for some natural number *n*. Hence $x \subseteq \bigcup X_n \subseteq X_{n+1} \subseteq X_{\omega}$.

Now we show that X_{ω} is the smallest \in -complete set containing *X*. Let *Y* be any \in -complete set containing *X*. Clearly $X_{\omega} \subseteq Y$ is equivalent to $X_n \subseteq Y$ for any natural number *n*. We will show by induction on *n* that $X_n \subseteq Y$ for any natural number *n*. If *n* = 0 then $X_n = X_0 = X \subseteq Y$. Assume $X_n \subseteq Y$. Then

$$X_{n+1} = X_n \cup (\cup X_n) \subseteq X_n \cup (\cup Y) \subseteq X_n \cup Y = Y.$$

2. A set X is \in -connected if for any two distinct elements x, y of X, either $x \in y$ or $y \in x$.

2a. *Give infinitely many examples of* \in *-connected sets.* (2 pts.) **Answer:** Every natural number is \in -connected.

2b. Show that a subset of $an \in$ -connected set is \in -connected. (3pts.)

Proof: Let *X* be \in -connected. Let *Y* \subseteq *X*. Let *x*, *y* \in *Y* be two distinct elements. Then *x*, *y* \in *Y*. Hence either *x* \in *y* or *y* \in *x*.

2c. Show that if X is \in -connected, then $X \cup \{X\}$ is also \in -connected. (3 pts.)

Proof: Let $x, y \in X \cup \{X\}$ be two distinct elements. If both x and y are elements of X then either $x \in y$ or $y \in x$. If one of them, say x = X, then $y \in x$.

2d. Assume $\{x\}$ is \in -connected. What can you say about x? (2 pts.)

Proof: Nothing! A singleton set $\{x\}$ is \in -connected because it has no two distinct elements.

3. Axiom of Regularity says that every nonempty set A has an element x such that $A \cap x = \emptyset$.

3a. Assuming the Axiom of Regularity show that no set x is a member of itself. (2 pts.)

Proof: Let *x* be any set and let $A = \{x\}$. By the Axiom of Regularity $A \cap x = \emptyset$, i.e. $\{x\} \cap x = \emptyset$, hence $x \notin x$ (otherwise $x \in \{x\} \cap x$).

3b. Assuming the Axiom of Regularity show that there are no sets x and y such that $x \in y$ and $y \in x$. (2 pts.)

Proof: Let *x* and *y* be any two sets and let $A = \{x, y\}$. By the Axiom of Regularity either $A \cap x = \emptyset$ or $A \cap y = \emptyset$, say $A \cap x = \emptyset$. Thus $\{x, y\} \cap x = \emptyset$. Since $x \notin x$ by 3a, this means that $y \notin x$.

3c. Assuming the Axiom of Regularity show that there are no sets x, y and z such that $x \in y$, $y \in z$ and $z \in x$. (2 pts.)

Proof: The same as above with $A = \{x, y, z\}$.

4. An ordinal is an \in -complete and \in -connected set.

4a. Assuming the Axiom of Regularity show that an ordinal is well-ordered by the relation \in . (10 pts.)

Proof: Let *X* be an ordinal.

Let $x \in X$. By 3a, $x \notin x$.

Let x, y, $z \in X$. Assume $x \in y \in z$. By 3b, $x \neq z$. Since X is \in -connected, this implies that either $x \in z$ or $z \in x$. The last one is forbidden by 3c. Hence $x \in z$.

Thus *X* is partially ordered by the relation \in .

It remains to show that any nonempty subset *Y* of *X* has a least element. (This implies that *X* is totally ordered). By the Axiom of Regularity, there is an $x \in Y$ such that $x \cap Y = \emptyset$. Now we show that for any $y \in Y$, either y = x or $x \in y$. Assume $y \neq x$. Then, *x*, *y* are two distinct elements of *X* and *X* is \in -connected, either $y \in x$ or $x \in y$. If $y \in x$, then $y \in x \cap Y = \emptyset$, a contradiction. Thus $x \in y$.

4b. Show that if α is an ordinal, so is $\alpha + 1$. (Recall that $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$). (3 pts.)

Proof: By 1b and 2c.

4c. Show that if β is an ordinal, then $\cup(\beta+1) = \beta$. (5 pts.)

Proof: $\cup(\beta+1) = \bigcup_{\gamma \in \beta+1} \gamma = \bigcup_{\gamma \in \beta \cup \{\beta\}} \gamma = (\bigcup_{\gamma \in \beta} \gamma) \cup \beta = \beta$ because, since β is an ordinal, for any $\gamma \in \beta$, $\gamma \subseteq \beta$.

4d. Show that every natural number is an ordinal. (2 pts.) **Proof:** $0 = \emptyset$ and \emptyset is an ordinal. If *n* is an ordinal n + 1 is an ordinal buy 4c.

4e. Assuming the Axiom of Regularity, show that every ordinal is either \emptyset or contains \emptyset as an element. (3 pts.)

Proof: Assume $\alpha \neq \emptyset$ is an ordinal. Then by 4a, α has a least element, say β . By 4a again, $\beta \cap \alpha = \emptyset$. But, since $\beta \in \alpha$, $\beta \subseteq \alpha$. Hence $\beta = \beta \cap \alpha = \emptyset$.

4f. Show that the set ω of natural numbers is an ordinal. (2 pts.) **Proof:** This is clear.

4g. Assuming the Axiom of Regularity, show that every element of an ordinal is an ordinal. (3 pts.)

Proof: Let *X* be an ordinal. Let $x \in X$.

We first show that x is an \in -complete set. Let $y \in x$. Let $z \in y$. Then $z \in y \in x$. Hence by 4a, $z \in x$. Thus $y \subseteq x$.

Now we show x is \in -connected. Let y, $z \in x$ be two distinct elements of x. Since $x \subseteq X$, y and z are elements of X. Hence either $y \in z$ or $z \in y$.

4h. An ordinal $\alpha \neq \emptyset$ is called a **limit ordinal** if α is not of the form $\beta + 1$ for some $\beta \in \alpha$. Show that ω is a limit ordinal but that no natural number is a limit ordinal. (5 pts.)

Proof: Suppose $\omega = \beta + 1$ for some $\beta \in \omega$. Then $\omega = \beta + 1 \in \omega$ and we know this is

4i. Show that if *X* is a set of ordinals such that for all α , $\beta \in X$ either $\alpha \subseteq \beta$ or $\alpha = \beta$ or $\beta \subseteq \alpha$, then $\cup X$ is an ordinal. (5 pts.)