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0a. Show that for any natural number m if n ∈ m then n ⊆ m. (4 pts.) 

Proof: By induction on m. 

If m = 0 = ∅, there is no such n, so this case is trivial. 

Assume the statement for m and let n ∈ m + 1 = m ∪ {m}. Then either n ∈ m or n 

= m. In the first case n ⊆ m by induction. Thus in both cases n ⊆ m. Hence 

n ⊆ m ⊆ m ∪ {m} = m + 1. 

 

0b. Show that for any natural number n, n ∉ n. (4 pts.) 

Proof: Clearly 0 ∉ ∅ =0. Assume n ∉ n. If n + 1 ∈ n + 1 = n ∪ {n}, then n + 1 ∈ 

n or n + 1 = n. In both cases n + 1 ⊆ n. Thus n ∪ {n} ⊆ n. Hence n ∈ n, a 

contradiction.  

 

0c. Let ω be the set of natural numbers. Show that ω ≠ n for any n ∈ ω. (3 pts.) 

Proof: By induction on n. If n = 0 = ∅, since 0 = ∅ ∈ ω, clearly ω ≠ 0. 

Assume n ≠ ω but that n + 1 = ω. Then n + 1 ∈ ω = n + 1, contradicting 0b. 

 

0d. Show that ω ∉ ω. (2 pts.) 

Proof: Assume ω ∈ ω. Then ω = n for some n ∈ ω. Contradicting 0c. 

 

0e. Let ω + 1 = ω ∪ {ω}. Show that ω +1 ∉ ω + 1 (3 pts.) 

Proof: Assume ω +1 ∈ ω + 1 = ω ∪ {ω}. Then either ω + 1 ∈ ω or ω + 1 = ω, 

i.e. either ω ∪ {ω} ∈ ω or ω ∪ {ω} = ω. In both cases ω ∈ ω, contradicting 0d. 

 

1. A set X is called ∈-complete if every element of X is a subset of X.  

1a. Show that a set X is ∈-complete if and only if ∪X ⊆ X. (2 pts.) 

Proof: (⇒) Let a ∈ ∪X. Then there is a b ∈ X such that a ∈ b. Since X is ∈-

complete, b ⊆ X. Thus a ∈ b ⊆ X and so a ∈ X. 

(⇐) Let a ∈ X. Then a ⊆ ∪ X ⊆ X. 

 

1b. Show that if X is complete, then X ∪ {X} is ∈-complete. (3 pts.) 

Proof: ∪( X ∪ {X}) = ∪x ∈ X ∪ {X} x = (∪x∈X x) ∪ X = (∪X) ∪ X = X.  

 

1c. Give infinitely many examples of ∈-complete sets. (2 pts.) 

Answer: Every natural number is an ∈-complete set. We can prove this by 

induction on n ∈ � by using 1b. 

 

1d. Show that if A is a set of ∈-complete sets, then ∩A and ∪A are also complete. 

(2 pts.) 

Proof: Let x ∈ ∩A. Then x ∈ y for any y ∈ A. But y is ∈-complete, so x ⊆ y for 

any y ∈ A. Thus x ⊆ ∩A. 



Let x ∈ ∪A. Then x ∈ y for some y ∈ A. But y is ∈-complete, so x ⊆ y. Thus x ⊆ 

∪A. 

 

1e. Assume {x} is ∈-complete. What can you say about x? (3 pts.) 

Answer: Since x is the only element of {x}, {x} is ∈-complete if and only if x ⊆ 

{x} if and only if x = ∅ or x = {x} if and only if x = ∅ or x ∈ x. 

 

1f. Let X be any set. Define Xo = X and Xn+1 = Xn ∪ (∪Xn) for any n ∈ �. Let Xω = 

∪n∈� Xn. Assuming Xω is a set, show that it is the smallest ∈-complete set containing 

X. (8 pts.) 

Proof: Remark first that X = X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xn ⊆ Xn+1 ⊆ ... ⊆ Xω. 

Next we show that Xω is ∈-complete. Let x ∈ Xω. Then x ∈ Xn for some natural 

number n. Hence x ⊆ ∪Xn ⊆ Xn+1 ⊆ Xω. 

Now we show that Xω is the smallest ∈-complete set containing X. Let Y be any 

∈-complete set containing X. Clearly Xω ⊆ Y is equivalent to Xn ⊆ Y for any natural 

number n. We will show by induction on n that Xn ⊆ Y for any natural number n. If n 

= 0 then Xn = X0 = X ⊆ Y. Assume Xn ⊆ Y. Then 

Xn+1 = Xn ∪ (∪Xn) ⊆ Xn ∪ (∪Y) ⊆ Xn ∪ Y = Y. 

 

2. A set X is ∈-connected if for any two distinct elements x, y of X, either x ∈ y or 

y ∈ x. 

2a. Give infinitely many examples of ∈-connected sets. (2 pts.) 

Answer: Every natural number is ∈-connected. 

 

2b. Show that a subset of an ∈-connected set is ∈-connected. (3pts.) 

Proof: Let X be ∈-connected. Let Y ⊆ X. Let x, y ∈ Y be two distinct elements. 

Then x, y ∈ Y. Hence either x ∈ y or y ∈ x. 

 

2c. Show that if X is ∈-connected, then X ∪ {X} is also ∈-connected. (3 pts.) 

Proof: Let x, y ∈ X ∪ {X} be two distinct elements. If both x and y are elements 

of X then either x ∈ y or y ∈ x. If one of them, say x = X, then y ∈ x. 

 

2d. Assume {x} is ∈-connected. What can you say about x? (2 pts.) 

Proof: Nothing! A singleton set {x} is ∈-connected because it has no two distinct 

elements. 

 

3. Axiom of Regularity says that every nonempty set A has an element x such 

that A ∩ x = ∅. 

3a. Assuming the Axiom of Regularity show that no set x is a member of itself. (2 

pts.) 

Proof: Let x be any set and let A = {x}. By the Axiom of Regularity A ∩ x = ∅, 

i.e. {x} ∩ x = ∅, hence x ∉ x (otherwise x ∈ {x} ∩ x). 

 

3b. Assuming the Axiom of Regularity show that there are no sets x and y such 

that x ∈ y and y ∈ x. (2 pts.) 



Proof: Let x and y be any two sets and let A = {x, y}. By the Axiom of Regularity 

either A ∩ x = ∅ or A ∩ y = ∅, say A ∩ x = ∅. Thus {x, y} ∩ x = ∅. Since x ∉ x by 

3a, this means that y ∉ x. 

 

3c. Assuming the Axiom of Regularity show that there are no sets x, y and z such 

that x ∈ y, y ∈ z and z ∈ x. (2 pts.) 

Proof: The same as above with A = {x, y, z}. 

 

4. An ordinal is an ∈-complete and ∈-connected set. 

4a. Assuming the Axiom of Regularity show that an ordinal is well-ordered by the 

relation ∈. (10 pts.) 

Proof: Let X be an ordinal. 

Let x ∈ X. By 3a, x ∉ x. 

Let x, y, z ∈ X. Assume x ∈ y ∈ z. By 3b, x ≠ z. Since X is ∈-connected, this 

implies that either x ∈ z or z ∈ x. The last one is forbidden by 3c. Hence x ∈ z. 

Thus X is partially ordered by the relation ∈. 

It remains to show that any nonempty subset Y of X has a least element. (This 

implies that X is totally ordered). By the Axiom of Regularity, there is an x ∈ Y such 

that x ∩ Y = ∅. Now we show that for any y ∈ Y, either y = x or x ∈ y. Assume y ≠ x. 

Then, x, y are two distinct elements of X and X is ∈-connected, either y ∈ x or x ∈ y. 

If y ∈ x, then y ∈ x ∩ Y = ∅, a contradiction. Thus x ∈ y. 

 

4b. Show that if α is an ordinal, so is α + 1. (Recall that α + 1 is defind to be α ∪ 

{α}). (3 pts.) 

Proof: By 1b and 2c. 

 

4c. Show that if β is an ordinal, then ∪(β+1) = β. (5 pts.) 

Proof: ∪(β+1) = ∪γ ∈ β+1 γ = ∪γ ∈ β∪{β} γ = (∪γ ∈ β γ) ∪ β = β because, since β is an 

ordinal, for any γ ∈ β, γ ⊆ β. 

 

4d. Show that every natural number is an ordinal. (2 pts.) 

Proof: 0 = ∅ and ∅ is an ordinal. If n is an ordinal n + 1 is an ordinal buy 4c. 

 

4e. Assuming the Axiom of Regularity, show that every ordinal is either ∅ or 

contains ∅ as an element. (3 pts.) 

Proof: Assume α ≠ ∅ is an ordinal. Then by 4a, α has a least element, say β. By 

4a again, β ∩ α = ∅. But, since β ∈ α, β ⊆ α. Hence β = β ∩ α = ∅. 

 

4f. Show that the set ω of natural numbers is an ordinal. (2 pts.) 

Proof: This is clear. 

 

4g. Assuming the Axiom of Regularity, show that every element of an ordinal is an 

ordinal. (3 pts.) 

Proof: Let X be an ordinal. Let x ∈ X.  

We first show that x is an ∈-complete set. Let y ∈ x. Let z ∈ y. Then z ∈ y ∈ x. 

Hence by 4a, z ∈ x. Thus y ⊆ x. 

Now we show x is ∈-connected. Let y, z ∈ x be two distinct elements of x. Since x 

⊆ X, y and z are elements of X. Hence either y ∈ z or z ∈ y. 



 

4h. An ordinal α ≠ ∅ is called a limit ordinal if α is not of the form β + 1 for 

some β ∈ α. Show that ω is a limit ordinal but that no natural number is a limit 

ordinal. (5 pts.) 

Proof: Suppose ω = β + 1 for some β ∈ ω. Then ω = β+1 ∈ ω and we know this 

is 

 

4i. Show that if X is a set of ordinals such that for all α, β ∈ X either α ⊆ β or α = 

β or β ⊆ α, then ∪X is an ordinal. (5 pts.) 

 


