Math 111

Fall 2005 Final
Ali Nesin

0a. Show that for any natural number m if $n \in m$ then $n \subseteq m$. (4 pts.)
Proof: By induction on m.
If $m=0=\varnothing$, there is no such n, so this case is trivial.
Assume the statement for m and let $n \in m+1=m \cup\{m\}$. Then either $n \in m$ or n $=m$. In the first case $n \subseteq m$ by induction. Thus in both cases $n \subseteq m$. Hence

$$
n \subseteq m \subseteq m \cup\{m\}=m+1
$$

0b. Show that for any natural number $n, n \notin n$. (4 pts.)
Proof: Clearly $0 \notin \varnothing=0$. Assume $n \notin n$. If $n+1 \in n+1=n \cup\{n\}$, then $n+1 \in$ n or $n+1=n$. In both cases $n+1 \subseteq n$. Thus $n \cup\{n\} \subseteq n$. Hence $n \in n$, a contradiction.

0c. Let ω be the set of natural numbers. Show that $\omega \neq n$ for any $n \in \omega$. (3 pts.)
Proof: By induction on n. If $n=0=\varnothing$, since $0=\varnothing \in \omega$, clearly $\omega \neq 0$.
Assume $n \neq \omega$ but that $n+1=\omega$. Then $n+1 \in \omega=n+1$, contradicting 0 b .
0d. Show that $\omega \notin \omega$. (2 pts.)
Proof: Assume $\omega \in \omega$. Then $\omega=n$ for some $n \in \omega$. Contradicting 0c.
0e. Let $\omega+1=\omega \cup\{\omega\}$. Show that $\omega+1 \notin \omega+1$ (3 pts.)
Proof: Assume $\omega+1 \in \omega+1=\omega \cup\{\omega\}$. Then either $\omega+1 \in \omega$ or $\omega+1=\omega$, i.e. either $\omega \cup\{\omega\} \in \omega$ or $\omega \cup\{\omega\}=\omega$. In both cases $\omega \in \omega$, contradicting 0 d.

1. A set X is called \in-complete if every element of X is a subset of X.

1a. Show that a set X is \in-complete if and only if $\cup X \subseteq X$. (2 pts.)
Proof: (\Rightarrow) Let $a \in \cup X$. Then there is a $b \in X$ such that $a \in b$. Since X is $\in-$ complete, $b \subseteq X$. Thus $a \in b \subseteq X$ and so $a \in X$.
(\Leftarrow) Let $a \in X$. Then $a \subseteq \cup X \subseteq X$.
1b. Show that if X is complete, then $X \cup\{X\}$ is \in-complete. (3 pts.)
Proof: $\cup(X \cup\{X\})=\cup_{x \in X \cup\{X\}} x=\left(\cup_{x \in X} x\right) \cup X=(\cup X) \cup X=X$.
1c. Give infinitely many examples of \in-complete sets. (2 pts.)
Answer: Every natural number is an \in-complete set. We can prove this by induction on $n \in \mathbb{N}$ by using 1 b .

1d. Show that if A is a set of \in-complete sets, then $\cap A$ and $\cup A$ are also complete. (2 pts.)

Proof: Let $x \in \cap A$. Then $x \in y$ for any $y \in A$. But y is \in-complete, so $x \subseteq y$ for any $y \in A$. Thus $x \subseteq \cap A$.

Let $x \in \cup A$. Then $x \in y$ for some $y \in A$. But y is \in-complete, so $x \subseteq y$. Thus $x \subseteq$ $\cup A$.

1e. Assume $\{x\}$ is \in-complete. What can you say about x ? (3 pts .)
Answer: Since x is the only element of $\{x\},\{x\}$ is \in-complete if and only if $x \subseteq$ $\{x\}$ if and only if $x=\varnothing$ or $x=\{x\}$ if and only if $x=\varnothing$ or $x \in x$.

1f. Let X be any set. Define $X_{0}=X$ and $X_{n+1}=X_{n} \cup\left(\cup X_{n}\right)$ for any $n \in \mathbb{N}$. Let $X_{\omega}=$ $\cup_{n \in \mathbb{N}} X_{n}$. Assuming X_{ω} is a set, show that it is the smallest \in-complete set containing X. (8 pts .)

Proof: Remark first that $X=X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \ldots \subseteq X_{n} \subseteq X_{n+1} \subseteq \ldots \subseteq X_{\omega}$.
Next we show that X_{ω} is \in-complete. Let $x \in X_{\omega}$. Then $x \in X_{n}$ for some natural number n. Hence $x \subseteq \cup X_{n} \subseteq X_{n+1} \subseteq X_{\omega}$.

Now we show that X_{ω} is the smallest \in-complete set containing X. Let Y be any \in-complete set containing X. Clearly $X_{\omega} \subseteq Y$ is equivalent to $X_{n} \subseteq Y$ for any natural number n. We will show by induction on n that $X_{n} \subseteq Y$ for any natural number n. If n $=0$ then $X_{n}=X_{0}=X \subseteq Y$. Assume $X_{n} \subseteq Y$. Then

$$
X_{n+1}=X_{n} \cup\left(\cup X_{n}\right) \subseteq X_{n} \cup(\cup Y) \subseteq X_{n} \cup Y=Y
$$

2. A set X is \in-connected if for any two distinct elements x, y of X, either $x \in y$ or $y \in x$.

2a. Give infinitely many examples of \in-connected sets. (2 pts .)
Answer: Every natural number is \in-connected.
2b. Show that a subset of an \in-connected set is \in-connected. (3pts.)
Proof: Let X be \in-connected. Let $Y \subseteq X$. Let $x, y \in Y$ be two distinct elements. Then $x, y \in Y$. Hence either $x \in y$ or $y \in x$.

2c. Show that if X is \in-connected, then $X \cup\{X\}$ is also \in-connected. (3 pts.)
Proof: Let $x, y \in X \cup\{X\}$ be two distinct elements. If both x and y are elements of X then either $x \in y$ or $y \in x$. If one of them, say $x=X$, then $y \in x$.

2d. Assume $\{x\}$ is \in-connected. What can you say about x ? (2 pts .)
Proof: Nothing! A singleton set $\{x\}$ is \in-connected because it has no two distinct elements.
3. Axiom of Regularity says that every nonempty set A has an element x such that $A \cap x=\varnothing$.

3a. Assuming the Axiom of Regularity show that no set x is a member of itself. (2 pts.)

Proof: Let x be any set and let $A=\{x\}$. By the Axiom of Regularity $A \cap x=\varnothing$, i.e. $\{x\} \cap x=\varnothing$, hence $x \notin x$ (otherwise $x \in\{x\} \cap x$).

3b. Assuming the Axiom of Regularity show that there are no sets x and y such that $x \in y$ and $y \in x$. (2 pts.)

Proof: Let x and y be any two sets and let $A=\{x, y\}$. By the Axiom of Regularity either $A \cap x=\varnothing$ or $A \cap y=\varnothing$, say $A \cap x=\varnothing$. Thus $\{x, y\} \cap x=\varnothing$. Since $x \notin x$ by 3a, this means that $y \notin x$.

3c. Assuming the Axiom of Regularity show that there are no sets x, y and z such that $x \in y, y \in z$ and $z \in x$. (2 pts.)

Proof: The same as above with $A=\{x, y, z\}$.
4. An ordinal is an \in-complete and \in-connected set.

4a. Assuming the Axiom of Regularity show that an ordinal is well-ordered by the relation \in. (10 pts.)

Proof: Let X be an ordinal.
Let $x \in X$. By 3a, $x \notin x$.
Let $x, y, z \in X$. Assume $x \in y \in z$. By $3 \mathrm{~b}, x \neq z$. Since X is \in-connected, this implies that either $x \in z$ or $z \in x$. The last one is forbidden by 3c. Hence $x \in z$.

Thus X is partially ordered by the relation \in.
It remains to show that any nonempty subset Y of X has a least element. (This implies that X is totally ordered). By the Axiom of Regularity, there is an $x \in Y$ such that $x \cap Y=\varnothing$. Now we show that for any $y \in Y$, either $y=x$ or $x \in y$. Assume $y \neq x$. Then, x, y are two distinct elements of X and X is \in-connected, either $y \in x$ or $x \in y$. If $y \in x$, then $y \in x \cap Y=\varnothing$, a contradiction. Thus $x \in y$.

4b. Show that if α is an ordinal, so is $\alpha+1$. (Recall that $\alpha+1$ is defind to be $\alpha \cup$ $\{\alpha\}$). (3 pts.)

Proof: By 1b and 2c.
4c. Show that if β is an ordinal, then $\cup(\beta+1)=\beta$. (5 pts.)
Proof: $\cup(\beta+1)=\cup_{\gamma \in \beta+1} \gamma=\cup_{\gamma \in \beta \cup\{\beta\}} \gamma=\left(\cup_{\gamma \in \beta} \gamma\right) \cup \beta=\beta$ because, since β is an ordinal, for any $\gamma \in \beta, \gamma \subseteq \beta$.

4d. Show that every natural number is an ordinal. (2 pts.)
Proof: $0=\varnothing$ and \varnothing is an ordinal. If n is an ordinal $n+1$ is an ordinal buy 4 c .
4e. Assuming the Axiom of Regularity, show that every ordinal is either \varnothing or contains \varnothing as an element. (3 pts.)

Proof: Assume $\alpha \neq \varnothing$ is an ordinal. Then by $4 \mathrm{a}, \alpha$ has a least element, say β. By 4a again, $\beta \cap \alpha=\varnothing$. But, since $\beta \in \alpha, \beta \subseteq \alpha$. Hence $\beta=\beta \cap \alpha=\varnothing$.

4f. Show that the set ω of natural numbers is an ordinal. (2 pts .)
Proof: This is clear.
4g. Assuming the Axiom of Regularity, show that every element of an ordinal is an ordinal. (3 pts.)

Proof: Let X be an ordinal. Let $x \in X$.
We first show that x is an \in-complete set. Let $y \in x$. Let $z \in y$. Then $z \in y \in x$. Hence by $4 \mathrm{a}, z \in x$. Thus $y \subseteq x$.

Now we show x is \in-connected. Let $y, z \in x$ be two distinct elements of x. Since x $\subseteq X, y$ and z are elements of X. Hence either $y \in z$ or $z \in y$.

4h. An ordinal $\alpha \neq \varnothing$ is called a limit ordinal if α is not of the form $\beta+1$ for some $\beta \in \alpha$. Show that ω is a limit ordinal but that no natural number is a limit ordinal. (5 pts.)

Proof: Suppose $\omega=\beta+1$ for some $\beta \in \omega$. Then $\omega=\beta+1 \in \omega$ and we know this is

4i. Show that if X is a set of ordinals such that for all $\alpha, \beta \in X$ either $\alpha \subseteq \beta$ or $\alpha=$ β or $\beta \subseteq \alpha$, then $\cup X$ is an ordinal. (5 pts.)

