0a. Show that for any natural number \(m \) if \(n \in m \) then \(n \subseteq m \). (4 pts.)

Proof: By induction on \(m \).

If \(m = 0 = \emptyset \), there is no such \(n \), so this case is trivial.

Assume the statement for \(m \) and let \(n \in m + 1 = m \cup \{m\} \). Then either \(n \in m \) or \(n = m \).

In the first case \(n \subseteq m \) by induction. Thus in both cases \(n \subseteq m \).

Hence \(n \subseteq m \subseteq m \cup \{m\} = m + 1 \).

0b. Show that for any natural number \(n \), \(n \notin n \). (4 pts.)

Proof: Clearly \(0 \notin \emptyset = 0 \). Assume \(n \notin n \). If \(n + 1 \in n + 1 = n \cup \{n\} \), then \(n + 1 \in n \) or \(n + 1 = n \). In both cases \(n + 1 \subseteq n \). Thus \(n \cup \{n\} \subseteq n \). Hence \(n \in n \), a contradiction.

0c. Let \(\omega \) be the set of natural numbers. Show that \(\omega \neq n \) for any \(n \in \omega \). (3 pts.)

Proof: By induction on \(n \). If \(n = 0 = \emptyset \), since \(0 = \emptyset \in \omega \), clearly \(\omega \neq 0 \).

Assume \(n \neq \omega \) but that \(n + 1 = \omega \). Then \(n + 1 \subseteq \omega \) by induction. Thus \(n + 1 \subseteq n + 1 = n \cup \{n\} \subseteq n \). Hence \(n \in n \), a contradiction.

0d. Show that \(\omega \notin \omega \). (2 pts.)

Proof: Assume \(\omega \in \omega \). Then \(\omega = n \) for some \(n \in \omega \). Contradicting 0c.

0e. Let \(\omega + 1 = \omega \cup \{\omega\} \). Show that \(\omega + 1 \notin \omega + 1 \). (3 pts.)

Proof: Assume \(\omega + 1 \in \omega + 1 = \omega \cup \{\omega\} \). Then either \(\omega + 1 = \omega \) or \(\omega + 1 = \omega \), i.e. either \(\omega \cup \{\omega\} \in \omega \) or \(\omega \cup \{\omega\} = \omega \). In both cases \(\omega \in \omega \), contradicting 0d.

1. A set \(X \) is called \(\in \)-complete if every element of \(X \) is a subset of \(X \).

1a. Show that a set \(X \) is \(\in \)-complete if and only if \(\cap X \subseteq X \). (2 pts.)

Proof: (\(\Rightarrow \)) Let \(a \in \cap X \). Then there is a \(b \in X \) such that \(a \in b \). Since \(X \) is \(\in \)-complete, \(b \subseteq X \). Thus \(a \in b \subseteq X \) and so \(a \in X \).

(\(\Leftarrow \)) Let \(a \in X \). Then \(a \subseteq \cup X \subseteq X \).

1b. Show that if \(X \) is complete, then \(X \cup \{X\} \) is \(\in \)-complete. (3 pts.)

Proof: \(\cup (X \cup \{X\}) = \cup_{x \in X \cup \{X\}} x = (\cup_{x \in X} x) \cup (\cup_{x \in \{X\}} x) = (\cup X) \cup (\cup \{X\}) = X \).

1c. Give infinitely many examples of \(\in \)-complete sets. (2 pts.)

Answer: Every natural number is an \(\in \)-complete set. We can prove this by induction on \(n \in \mathbb{N} \) by using 1b.

1d. Show that if \(A \) is a set of \(\in \)-complete sets, then \(\cap A \) and \(\cup A \) are also complete. (2 pts.)

Proof: Let \(x \in \cap A \). Then \(x \subseteq y \) for any \(y \in A \). But \(y \) is \(\in \)-complete, so \(x \subseteq y \) for any \(y \in A \). Thus \(x \subseteq \cap A \).
Let \(x \in \bigcup A \). Then \(x \in y \) for some \(y \in A \). But \(y \) is \(\in \)-complete, so \(x \subseteq y \). Thus \(x \subseteq \bigcup A \).

1e. Assume \(\{x\} \) is \(\in \)-complete. What can you say about \(x \)? (3 pts.)
Answer: Since \(x \) is the only element of \(\{x\} \), \(\{x\} \) is \(\in \)-complete if and only if \(x \subseteq \{x\} \) if and only if \(x = \emptyset \) or \(x = \{x\} \) if and only if \(x = \emptyset \) or \(x \in x \).

1f. Let \(X \) be any set. Define \(X_0 = X \) and \(X_{n+1} = X_n \cup (\bigcup X_n) \) for any \(n \in \mathbb{N} \). Let \(X_\omega = \bigcup_{n \in \mathbb{N}} X_n \). Assuming \(X_\omega \) is a set, show that it is the smallest \(\in \)-complete set containing \(X \). (8 pts.)
Proof: Remark first that \(X = X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots \subseteq X_n \subseteq X_{n+1} \subseteq \ldots \subseteq X_\omega \).
Next we show that \(X_\omega \) is \(\in \)-complete. Let \(x \in X_\omega \). Then \(x \in X_n \) for some natural number \(n \). Hence \(x \subseteq \bigcup X_n \subseteq X_{n+1} \subseteq X_\omega \).
Now we show that \(X_\omega \) is the smallest \(\in \)-complete set containing \(X \). Let \(Y \) be any \(\in \)-complete set containing \(X \). Clearly \(X_\omega \subseteq Y \) is equivalent to \(X_n \subseteq Y \) for any natural number \(n \). We will show by induction on \(n \) that \(X_n \subseteq Y \) for any natural number \(n \). If \(n = 0 \) then \(X_n = X_0 = X \subseteq Y \). Assume \(X_n \subseteq Y \). Then \(X_{n+1} = X_n \cup (\bigcup X_n) \subseteq X_n \cup (\bigcup Y) \subseteq X_n \cup Y = Y \).

2. A set \(X \) is \(\in \)-connected if for any two distinct elements \(x, y \) of \(X \), either \(x \in y \) or \(y \in x \).
2a. Give infinitely many examples of \(\in \)-connected sets. (2 pts.)
Answer: Every natural number is \(\in \)-connected.

2b. Show that a subset of an \(\in \)-connected set is \(\in \)-connected. (3 pts.)
Proof: Let \(X \) be \(\in \)-connected. Let \(Y \subseteq X \). Let \(x, y \in Y \) be two distinct elements. Then \(x, y \in Y \). Hence either \(x \in y \) or \(y \in x \).

2c. Show that if \(X \) is \(\in \)-connected, then \(X \cup \{X\} \) is also \(\in \)-connected. (3 pts.)
Proof: Let \(x, y \in X \cup \{X\} \) be two distinct elements. If both \(x \) and \(y \) are elements of \(X \) then either \(x \in y \) or \(y \in x \). If one of them, say \(x = X \), then \(y \in x \).

2d. Assume \(\{x\} \) is \(\in \)-connected. What can you say about \(x \)? (2 pts.)
Proof: Nothing! A singleton set \(\{x\} \) is \(\in \)-connected because it has no two distinct elements.

3. Axiom of Regularity says that every nonempty set \(A \) has an element \(x \) such that \(A \cap x = \emptyset \).
3a. Assuming the Axiom of Regularity show that no set \(x \) is a member of itself. (2 pts.)
Proof: Let \(x \) be any set and let \(A = \{x\} \). By the Axiom of Regularity \(A \cap x = \emptyset \), i.e. \(\{x\} \cap x = \emptyset \), hence \(x \notin x \) (otherwise \(x \in \{x\} \cap x \)).

3b. Assuming the Axiom of Regularity show that there are no sets \(x \) and \(y \) such that \(x \in y \) and \(y \in x \). (2 pts.)
Proof: Let x and y be any two sets and let $A = \{x, y\}$. By the Axiom of Regularity either $A \cap x = \emptyset$ or $A \cap y = \emptyset$, say $A \cap x = \emptyset$. Thus $\{x, y\} \cap x = \emptyset$. Since $x \notin x$ by 3a, this means that $y \notin x$.

3c. Assuming the Axiom of Regularity show that there are no sets x, y and z such that $x \in y$, $y \in z$ and $z \in x$. (2 pts.)

Proof: The same as above with $A = \{x, y, z\}$.

4. An ordinal is an \in-complete and \in-connected set.

4a. Assuming the Axiom of Regularity show that an ordinal is well-ordered by the relation \in. (10 pts.)

Proof: Let X be an ordinal.

Let $x \in X$. By 3a, $x \notin x$.

Let x, y, $z \in X$. Assume $x \in y \in z$. By 3b, $x \notin z$. Since X is \in-connected, this implies that either $x \in z$ or $z \in x$. The last one is forbidden by 3c. Hence $x \in z$.

Thus X is partially ordered by the relation \in.

It remains to show that any nonempty subset Y of X has a least element. (This implies that X is totally ordered). By the Axiom of Regularity, there is an $x \in Y$ such that $x \cap Y = \emptyset$. Now we show that for any $y \in Y$, either $y = x$ or $x \in y$. Assume $y \neq x$. Then, x, y are two distinct elements of X and X is \in-connected, either $y \in x$ or $x \in y$. If $y \in x$, then $y \in x \cap Y = \emptyset$, a contradiction. Thus $x \in y$.

4b. Show that if α is an ordinal, so is $\alpha + 1$. (Recall that $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$). (3 pts.)

Proof: By 1b and 2c.

4c. Show that if β is an ordinal, then $\cup (\beta + 1) = \beta$. (5 pts.)

Proof: $\cup (\beta + 1) = \cup_{\gamma \in \beta + 1} \gamma = \cup_{\gamma \in \beta} \gamma = (\cup_{\gamma \in \beta} \gamma) \cup \beta = \beta$ because, since β is an ordinal, for any $\gamma \in \beta$, $\gamma \subseteq \beta$.

4d. Show that every natural number is an ordinal. (2 pts.)

Proof: $0 = \emptyset$ and \emptyset is an ordinal. If n is an ordinal $n + 1$ is an ordinal buy 4c.

4e. Assuming the Axiom of Regularity, show that every ordinal is either \emptyset or contains \emptyset as an element. (3 pts.)

Proof: Assume $\alpha \neq \emptyset$ is an ordinal. Then by 4a, α has a least element, say β. By 4a again, $\beta \cap \alpha = \emptyset$. But, since $\beta \in \alpha$, $\beta \subseteq \alpha$. Hence $\beta = \beta \cap \alpha = \emptyset$.

4f. Show that the set ω of natural numbers is an ordinal. (2 pts.)

Proof: This is clear.

4g. Assuming the Axiom of Regularity, show that every element of an ordinal is an ordinal. (3 pts.)

Proof: Let X be an ordinal. Let $x \in X$.

We first show that x is an \in-complete set. Let $y \in x$. Let $z \in y$. Then $z \in y \in x$. Hence by 4a, $z \in x$. Thus $y \subseteq x$.

Now we show x is \in-connected. Let $y, z \in x$ be two distinct elements of x. Since $x \subseteq X$, y and z are elements of X. Hence either $y \in z$ or $z \in y$.

4h. An ordinal $\alpha \neq \emptyset$ is called a **limit ordinal** if α is not of the form $\beta + 1$ for some $\beta \in \alpha$. Show that ω is a limit ordinal but that no natural number is a limit ordinal. (5 pts.)

Proof: Suppose $\omega = \beta + 1$ for some $\beta \in \omega$. Then $\omega = \beta + 1 \in \omega$ and we know this is

4i. Show that if X is a set of ordinals such that for all $\alpha, \beta \in X$ either $\alpha \subseteq \beta$ or $\alpha = \beta$ or $\beta \subseteq \alpha$, then $\bigcup X$ is an ordinal. (5 pts.)