Math 111

Midterm 3 April 1999 Özlem Beyarslan - Ali Nesin

- **1.** A set *X* is called **complete** if every element of *X* is a subset of *X*.
- 1a. Give infinitely many examples of complete sets.
- **1b.** Show that if A is a set of complete sets, then $\cap A$ and $\cup A$ are also complete.
- **1c.** Show that if *X* is complete, then $X \cup \{X\}$ is complete.
- **1d.** Show that if A and B are complete sets, then $A \times B$ is also complete.
- **1e.** Let X be any set. Define $X_0 = X$ and $X_{n+1} = X_n \cup (\bigcup X_n)$. Let $X_{\omega} = \bigcup_{n \in \mathbb{N}} X_n$.

Assuming X_{ω} is a set, show that X_{ω} is the smallest complete set containing X.

- **1f.** Assume $\{x\}$ is complete. What can you say about x?
- **2.** What can you say about *X* if $X \cup \{X\} = X$.
- **3.** A set *X* is \in -connected if for any two distinct elements x, y of X, either $x \in y$ or $y \in x$.
 - **3a.** Give infinitely many examples of \in -connected sets.
 - **3b.** Show that a subset of an \in -connected set is \in -connected.
 - **3c.** Show that if X is \in -connected, then $X \cup \{X\}$ is also \in -connected.
 - **3d.** Assume $\{x\}$ is \in -connected. What can you say about x?
- **4. Axiom of Regularity** says that every nonempty set *A* has an element *x* such that $A \cap x = \emptyset$.
 - **4a.** Assuming the Axiom of Regularity show that no set x is a member of itself.
- **4b.** Assuming the Axiom of Regularity show that there are no sets x and y such that $x \in y$ and $y \in x$.
 - **4c.** Assuming the Axiom of Regularity show that if $A \subseteq A \times A$, then $A = \emptyset$.