Ordinals

Summer Midterm II 15th of June, 1999 Ali Nesin

Prelude: Let X be a set and < be a total order on X. We say that (X, <) is a **well-ordered** set (or that < well-orders X) if every nonempty subset of X contains a minimal element for that order, i.e., if for every nonempty subset A of X, there is an $m \in A$ such that $m \le a$ for all a in A. Clearly, given A, such an m is unique.

Of course, subsets of the well-ordered set X inherit the well-order of X.

If (X, <) is an ordered set and $x \in X$, we define

 $s(x) = \{y \in X : y < x\}$ (the initial segment of *x*)

If X is a set, we set $X^+ = X \cup \{X\}$. By the axiom of regularity, X is a proper subset of X^+ .

1. Assume X is a well-ordered set. Order X^+ by extending the order of X and stating that X is larger than its elements (i.e. put the element X to the very end of X). Show that X^+ is also a well-ordered set. (3 pts.)

2. (Transfinite Induction) Let (X, <) be a well-ordered set and let $A \subseteq X$ be such that for all $x \in X$, if $s(x) \subseteq A$, then $x \in A$. Show that A = X. (5 pts.)

3. Let *X* and *Y* be two well-ordered sets. Let $A = (X \times \{0\}) \cup (Y \times \{1\}).$ Order *A* as follows: $(x_1, 0) < (x_2, 0)$ for all x_1 and x_2 in *X* and $x_1 < x_2.$ $(y_1, 1) < (y_2, 1)$ for all y_1 and y_2 in *Y* and $y_1 < y_2.$ (x, 0) < (y, 1) for all $x \in X$ and $y \in Y.$ Show that the above relation well-orders *A*. (4 pts.)

An **ordinal** is a well-ordered set α such that $\beta = s(\beta)$ for all $\beta \in \alpha$. Thus an ordinal is a set well-ordered by the relation \in : For all $\beta, \gamma \in \alpha, \gamma < \beta$ iff $\gamma \in \beta$.

4. Show that \emptyset is an ordinal. (2 pts.)

5. Show that if $\alpha \neq \emptyset$ is an ordinal, then $\emptyset \in \alpha$ and \emptyset is the least element of α . (7 pts.)

6. Show that if α is an ordinal and $\beta \in \alpha$, then $\beta \subset \alpha$. (2 pts.)

7. Show that every element of an ordinal is an ordinal. (2 pts.)

8. Show that if α is an ordinal, then α $^{+}$ is also an ordinal. (2 pts.)

9. Let α be an ordinal and $\beta \in \alpha$. Show that either $\beta^+ \in \alpha$ or $\beta^+ = \alpha$. (8 pts.)

10. In exercise 3 take $X = \omega$ and $Y = 1 = \{0\}$. Show that the well-ordered set *A* obtained there is isomorphic to the ordinal ω^+ , i.e. there is an order-preserving bijection from *A* onto ω^+ . (4 pts.)

11. In exercise 3 take $X = 1 = \{0\}$ and $Y = \omega$. Show that the well-ordered set *A* obtained there is **isomorphic** to ω , i.e. there is an order-preserving bijection from *A* onto ω . (4 pts.)

12. Let α , β be ordinals. Show that either $\alpha < \beta$ or $\alpha = \beta$ or $\beta < \alpha$. (18 pts.)

13. Show that the union of a set of ordinals is an ordinal. (3 pts.)

14. Let α and β be two ordinals. Let $f : \alpha \to \beta$ be a strictly increasing function. Show that if f is onto, then $\alpha = \beta$ and f is the identity map. (18 pts.)

15. Show that every well-ordered set is isomorphic to an ordinal. (18 pts.)