Ordinals

Summer Midterm II
15th of June, 1999
Ali Nesin

Prelude: Let X be a set and < be a total order on X. We say that $(X,<)$ is a well-ordered set (or that $<$ well-orders X) if every nonempty subset of X contains a minimal element for that order, i.e., if for every nonempty subset A of X, there is an $m \in A$ such that $m \leq a$ for all a in A. Clearly, given A, such an m is unique.

Of course, subsets of the well-ordered set X inherit the wellorder of X.

If $(X,<)$ is an ordered set and $x \in X$, we define

$$
s(x)=\{y \in X: y<x\} \text { (the initial segment of } x \text {) }
$$

If X is a set, we set $X^{+}=X \cup\{X\}$. By the axiom of regularity, X is a proper subset of X^{+}.

1. Assume X is a well-ordered set. Order X^{+}by extending the order of X and stating that X is larger than its elements (i.e. put the element X to the very end of X). Show that X^{+}is also a well-ordered set. (3 pts.)
2. (Transfinite Induction) Let $(X,<)$ be a well-ordered set and let $A \subseteq X$ be such that for all $x \in X$, if $s(x) \subseteq A$, then $x \in A$. Show that $A=X$. (5 pts .)
3. Let X and Y be two well-ordered sets. Let
$A=(X \times\{0\}) \cup(Y \times\{1\})$.
Order A as follows:

$$
\begin{aligned}
& \left(x_{1}, 0\right)<\left(x_{2}, 0\right) \text { for all } x_{1} \text { and } x_{2} \text { in } X \text { and } x_{1}<x_{2} \text {. } \\
& \left(y_{1}, 1\right)<\left(y_{2}, 1\right) \text { for all } y_{1} \text { and } y_{2} \text { in } Y \text { and } y_{1}<y_{2} . \\
& (x, 0)<(y, 1) \text { for all } x \in X \text { and } y \in Y .
\end{aligned}
$$

Show that the above relation well-orders A. (4 pts.)
An ordinal is a well-ordered set α such that $\beta=s(\beta)$ for all $\beta \in$ α. Thus an ordinal is a set well-ordered by the relation \in :

For all $\beta, \gamma \in \alpha, \gamma<\beta$ iff $\gamma \in \beta$.
4. Show that \varnothing is an ordinal. (2 pts.)
5. Show that if $\alpha \neq \varnothing$ is an ordinal, then $\varnothing \in \alpha$ and \varnothing is the least element of α. (7 pts.)
6. Show that if α is an ordinal and $\beta \in \alpha$, then $\beta \subset \alpha$. (2 pts.)
7. Show that every element of an ordinal is an ordinal. (2 pts.)
8. Show that if α is an ordinal, then α^{+}is also an ordinal. (2 pts.)
9. Let α be an ordinal and $\beta \in \alpha$. Show that either $\beta^{+} \in \alpha$ or β^{+} $=\alpha$. (8 pts.)
10. In exercise 3 take $X=\omega$ and $Y=1=\{0\}$. Show that the well-ordered set A obtained there is isomorphic to the ordinal ω^{+}, i.e. there is an order-preserving bijection from A onto ω^{+}. (4 pts.)
11. In exercise 3 take $X=1=\{0\}$ and $Y=\omega$. Show that the well-ordered set A obtained there is isomorphic to ω, i.e. there is an order-preserving bijection from A onto ω. (4 pts.)
12. Let α, β be ordinals. Show that either $\alpha<\beta$ or $\alpha=\beta$ or $\beta<$ α. (18 pts.)
13. Show that the union of a set of ordinals is an ordinal. (3 pts.)
14. Let α and β be two ordinals. Let $f: \alpha \rightarrow \beta$ be a strictly increasing function. Show that if f is onto, then $\alpha=\beta$ and f is the identity map. (18 pts.)
15. Show that every well-ordered set is isomorphic to an ordinal. (18 pts.)

