Algebra

Math 211 Midterm
November 11, 2003
Ali Nesin

1. How many abelian groups are there up to isomorphism of order 67500? (5 pts.)

Answer: Since $67500=675 \times 10^{2}=25 \times 27 \times 10^{2}=2^{2} \times 3^{3} \times 5^{4}$, the answer is 2 $\times 3 \times 5=30$.

For the 2-part of the group we have two choices: $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$.
For the 3-part of the group we have three choices:

$$
\begin{aligned}
& \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \\
& \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z} \\
& \mathbb{Z} / 27 \mathbb{Z}
\end{aligned}
$$

For the 5-part of the group we have five choices:

$$
\begin{aligned}
& \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}, \\
& \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 25 \mathbb{Z}, \\
& \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 125 \mathbb{Z}, \\
& \mathbb{Z} / 625 \mathbb{Z}, \\
& \mathbb{Z} / 25 \mathbb{Z} \times \mathbb{Z} / 25 \mathbb{Z}
\end{aligned}
$$

2. Let $\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group. Prove or disprove: $\mathbb{Z}\left(p^{\infty}\right) \approx \mathbb{Z}\left(p^{\infty}\right) \oplus \mathbb{Z}\left(p^{\infty}\right)$. (5 pts.)

Disproof: The first one has $p-1$ elements of order p, the second one has $p^{2}-1$ elements of order p, so that these two groups cannot be isomorphic.
3. Show that a subgroup of index 2 of a group is necessarily normal. (5 pts.)

Proof: Let H be a subgroup of index 2 of G. Let $a \in G \backslash H$. Then $G=H \sqcup H a=$ $H \sqcup a H$, so that $a H=G \backslash H=H a$, hence $a H=H a$. If $a \in H, a H=H a$ as well. So $a H$ $=H a$ all $a \in G$ and $H \triangleleft G$.
4. Show that $\mathbb{Q}^{*} \approx(\mathbb{Z} / 2 \mathbb{Z}) \oplus\left(\oplus_{\omega} \mathbb{Z}\right)$. (5 pts. $)$

Proof: Let $q \in \mathbb{Q}^{*}$. Then $q=a / b$ for some $a, b \in \mathbb{Z} \backslash\{0\}$. Decomposing a and b into their prime factorization, we can write q as a \pm product of (negative or positive) powers of prime numbers. Set,

$$
q=\varepsilon(q) \prod_{p \text { prime }} p^{\operatorname{val}_{p}(q)}
$$

where $\operatorname{val}_{p}(q) \in \mathbb{Z}$ and $\varepsilon(q)= \pm 1$ depending on the sign of q. Note that all the $\operatorname{val}_{p}(q)$ are 0 except for a finite number of them. Let $\varphi: \mathbb{Q}^{*} \rightarrow(\mathbb{Z} / 2 \mathbb{Z}) \oplus\left(\oplus_{\omega} \mathbb{Z}\right)$ be defined by

$$
\varphi(q)=\left(\varepsilon(q), \operatorname{val}_{2}(q), \operatorname{val}_{3}(q), \operatorname{val}_{5}(q), \ldots\right)
$$

It is clear that φ is an isomorphism of groups. (Here we view $\mathbb{Z} / 2 \mathbb{Z}$ as the multiplicative group $\{1,-1\}$).
5. Find $\left|\operatorname{Aut}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)\right|$. (10 pts.)

Answer. The group $\mathbb{Z} / p^{n} \mathbb{Z}$ being cyclic (generated by 1 , the image of 1), any endomorphism φ of $\mathbb{Z} / p^{n} \mathbb{Z}$ is determined by $\varphi(\underline{1})$. Then $\varphi(\underline{x})=x \varphi(\underline{1})$ for all $x \in \mathbb{Z}$. Conversely any $\underline{a} \in \mathbb{Z} / p^{n} \mathbb{Z}$ gives rise to a homomorphism φ_{a} via $\varphi_{a}(\underline{x})=x \underline{a}$. In other words $\operatorname{End}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \approx \mathbb{Z} / p^{n} \mathbb{Z}$ via $\varphi \mapsto \varphi(1)$ as rings with identity. Thus $\operatorname{Aut}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)=$ $\operatorname{End}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*} \approx\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}=\{\underline{a}: a$ prime to $p\}=\{\underline{a}: a$ not divisible by $p\}=\mathbb{Z} / p^{n} \mathbb{Z} \backslash$ $p \mathbb{Z} / p^{n} \mathbb{Z}$ and has $p^{n}-p^{n-1}$ elements.
6. What is $\operatorname{Hom}(\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z})$? More generally, what is $\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})$? How many elements does it have? (15 pts .)

Answer: Since $\mathbb{Z} / n \mathbb{Z}$ is cyclic and generated by $\underline{1}$ (the image of 1 in $\mathbb{Z} / n \mathbb{Z}$), any element φ of $\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})$ is determined $\varphi(\underline{1}) \in \mathbb{Z} / m \mathbb{Z}$. Let

$$
\operatorname{val}_{1}: \operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \rightarrow \mathbb{Z} / m \mathbb{Z}
$$

be the map determined $\operatorname{by~}_{\operatorname{val}_{1}(\varphi)}(\varphi(\underline{1})$. This is a homomorphism of (additive) groups. Furthermore it is one to one. However val_{1} is not onto as in Question 5, because not all $\underline{\underline{a}} \in \mathbb{Z} / m \mathbb{Z}$ gives rise to a well-defined function $\underline{x} \mapsto x \underline{a}$.

Claim: An element $\underline{\underline{a}} \in \mathbb{Z} / m \mathbb{Z}$ gives rise to a well-defined function $\underline{x} \mapsto x \underline{\underline{a}}$ if and only if m / d divides a where $d=\operatorname{gcd}(m, n)$.

Proof of the Claim: Assume m / d divides a where $d=\operatorname{gcd}(m, n)$. We want to show that the map $\underline{x} \mapsto x \underline{\underline{a}}$ from $\mathbb{Z} / n \mathbb{Z}$ into $\mathbb{Z} / m \mathbb{Z}$ is well-defined. Indeed assume $\underline{x}=y$. Then n divides $x-y$. So $n a$ divides $x a-y a$. By hypothesis, it follows that $n m / d$ divides $x a-y a$. Since $n m / d=\operatorname{lcm}(m, n)$, we get that $\operatorname{lcm}(m, n)$ divides $x a-y a$. Hence m divides $x a-y a$. It follows that $x \underline{\underline{a}}=y \underline{\underline{a}}$.

Conversely, assume that the function $\underline{x} \mapsto x \underline{\underline{a}}$ from $\mathbb{Z} / n \mathbb{Z}$ into $\mathbb{Z} / m \mathbb{Z}$ is welldefined. Then $n \underline{\underline{a}}=0 \underline{\underline{a}}=\underline{\underline{0}}$ and m divides $n a$. Hence m / d divides $(n / d) a$. Since n / d and m / d are prime to each other we get that m / d divides a. This proves the claim.

Now we continue with the solution of our problem. The claim shows that the homomorphism

$$
\operatorname{val}_{1}: \operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \rightarrow(m / d) \mathbb{Z} / m \mathbb{Z}
$$

is an isomorphism. We can go further and prove that $(m / d) \mathbb{Z} / m \mathbb{Z} \approx \mathbb{Z} / d \mathbb{Z}$.
Claim: If $n=m p$ then $m \mathbb{Z} / n \mathbb{Z} \approx \mathbb{Z} / p \mathbb{Z}$.
Proof of the Claim: Let $\varphi: \mathbb{Z} \rightarrow m \mathbb{Z} / n \mathbb{Z}$ be defined by $\varphi(x)=\underline{\underline{m x}}$. Clearly φ is a homomorphism and onto. Its kernel is $\{x \in \mathbb{Z}: n$ divides $m x\}=\{x \in \mathbb{Z}: m p$ divides $m x\}=\{x \in \mathbb{Z}: p$ divides $x\}=p \mathbb{Z}$. So $\mathbb{Z} / p \mathbb{Z} \approx m \mathbb{Z} / n \mathbb{Z}$.

Thus $\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \approx \mathbb{Z} / d \mathbb{Z}$ where $d=\operatorname{gcd}(m, n)$ and

$$
\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})=\{\underline{x} \mapsto k(m / d) \underline{\underline{x}}: k \in \mathbb{Z}\}
$$

For the specifique question: $\operatorname{Hom}(\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z})=\{\underline{x} \mapsto \underline{\underline{0}}, \underline{x} \mapsto 3 \underline{\underline{x}}\} \approx\{\underline{\underline{0}}, \underline{\underline{3}}\}^{+}$.
7. Let p be a prime, A a finite p-group and $\varphi \in \operatorname{Aut}(A)$ an automorphism of order p^{n} for some n. Show that $\varphi(a)=a$ for some $a \in A^{\#}$. (10 pts.)

Proof: Let $G=\langle\varphi\rangle$. Then $|G|=p^{n}$ and G acts on $A^{\#}$. For $a \in A^{\#}$, there is a bijection between the G-orbit $G a$ of a and the coset space G / G_{a} where $G_{a}=\{g \in G$: $g(a)=a\}$ given by $g G_{a} \mapsto g a$. Thus $|G a|=\left|G / G_{a}\right|$ and

$$
\left|A^{\#}\right|=\left|\sqcup_{a} G a\right|=\Sigma_{a}|G a|=\Sigma_{a}\left|G / G_{a}\right| .
$$

If $G_{a} \neq G$ for all a, then $\left|G / G_{a}\right|=p^{i}$ for some $i \geq 1$ so that p divides $\Sigma_{a}\left|G / G_{a}\right|=\left|A^{\#}\right|=$ $p^{n}-1$, a contradiction. Thus $G_{a} \neq G$ for some a and for this $a,|G a|=1$, i.e. $G a=\{a\}$ and $\varphi(a)=a$.
8. Let G be a group and $g \in G^{\#}$. Show that there is a subgroup H of G maximal with respect to the property that $g \notin H$. (10 pts .)

Proof: Let $Z=\{H \leq G: g \notin H\}$. Order Z by inclusion. Since the trivial group 1 $\in Z, Z \neq \varnothing$. It is easy to show that if $\left(H_{i}\right)_{I}$ is an increasing chain from Z then $\cup_{I} H_{i} \in$ Z. Thus Z is an inductive set. By Zorn's Lemma it has a maximal element, say H. Then H is a maximal subgroup of G not containing g.
9. A group G is called divisible if for every $g \in G$ and $n \in \mathbb{N} \backslash\{0\}$ there is an h $\in G$ such that $h^{n}=g$.

9a. Show that a divisible group cannot have a proper subgroup of finite index. (10 pts.)

Proof: Assume G is divisible. Let $H \leq G$ be a subgroup of finite index, say n. We first prove that G has a normal subgroup K of finite index contained in H.

Claim: A group G that has a subgroup of index n has a normal subgroup of index dividing $n!$ and contained in H.

Proof of the Claim. Let G act on the left coset space G / H via $g .(x H)=g x H$. This gives rise to a homomorphism φ from G into $\operatorname{Sym}(G / H)$, and the latter is isomorphic to $\operatorname{Sym}(n)$. Thus $\operatorname{Ker}(\varphi)$ is a normal subgroup and φ gives rise to an embedding of $G / \operatorname{Ker}(\varphi)$ into $\operatorname{Sym}(n)$. Thus $|G / \operatorname{Ker}(\varphi)|$ dives $n!$ and $\operatorname{Ker}(\varphi)$ is a normal subgroup of index dividing n !

An easy calculation shows that $\operatorname{Ker}(\varphi)=\{g \in G: g(x H)=x H$ all $g \in G\}=\cap_{x \in G}$ $H^{x} \leq H$. This proves the claim.

Let K be the normal subgroup of index m of G. Let $a \in G$. Let $b \in G$ be such that $a=b^{m}$. Then $a=b^{m} \in K$ (because the group G / K has order m) and so $G=K$.

9b. Conclude that a divisible abelian group cannot have a proper subgroup which is maximal with respect to being proper. (10 pts.)

Proof: Let G be a divisible abelian group. Let $H<G$ be a maximal subgroup of G. Then G / H has no nontrivial proper subgroups. Thus G / H is generated by any of its nontrivial elements. In particular G / H is cyclic. Since G / H cannot be isomorphic to \mathbb{Z} (because \mathbb{Z} has proper nontrivial subgroups, like $2 \mathbb{Z}$), G / H is finite. By the question above $H=G$.
10. Let G be a group. Let $H \triangleleft G$.

10a. Assume $\mathbb{Z} \approx H$. Show that $\mathrm{C}_{G}(H)$ has index 1 or 2 in G. (10 pts .)
Proof: Any element of G gives rise to an automorphism of H (hence of \mathbb{Z}) by conjugation. In other words, there is a homomorphism of groups $\varphi: G \rightarrow \operatorname{Aut}(H) \approx$
$\operatorname{Aut}(\mathbb{Z})$ given by $\varphi(g)(h)=h^{g}$ for all $h \in G$. The kernel of φ is clearly $\mathrm{C}_{G}(H)$. Thus $G / \mathrm{C}_{G}(H)$ embeds in $\operatorname{Aut}(\mathbb{Z})$. But \mathbb{Z} has only two generators, 1 and -1 and any automorphism of \mathbb{Z} is determined by its impact on 1 , which must be 1 or -1 . Thus $|\operatorname{Aut}(\mathbb{Z})|=2$. This proves it.

10b. Assume H is finite. Show that $\mathrm{C}_{G}(H)$ has finite index in G. (5 pts .)
Proof: As above. φ is a homomorphism from G into the finite $\operatorname{group} \operatorname{Aut}(H)$ and the kernel of this automorphism is $\mathrm{C}_{G}(H)$.

