Quiz on Ordinals
Math 111
April 1999
Ali Nesin

We assume the Axiom of Regularity throughout.

An ordinal is a set α such that

i) For any two distinct elements x, y of α, either $x \in y$ or $y \in x$. (Such a set is called ε-connected).

ii) Any element of α is a subset of α. (Such a set is called ε-complete).

1. Show that if α is an ordinal, then $\cup \alpha \subseteq \alpha$.
2. Show that if α is an ordinal, so is $\alpha + 1$. (Recall that $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$).
3. Show that if β is an ordinal, then $\cup (\beta + 1) = \beta$.
4. Show that every natural number is an ordinal.
5. Show that every ordinal is either \emptyset or contains \emptyset as an element.
6. Show that the set ω of natural numbers is an ordinal.
7. Show that the membership relation \in totally orders an ordinal.
8. Show that every element of an ordinal is an ordinal.
9. Show that every nonempty subset of an ordinal has a least element.
10. An ordinal α is called a limit ordinal if α is not of the form $\beta + 1$ for some $\beta \in \alpha$. Show that ω is a limit ordinal but that no natural number is a limit ordinal.
11. Show that if X is a set of ordinals such that for all $\alpha, \beta \in X$ either $\alpha \subseteq \beta$ or $\alpha = \beta$ or $\beta \subseteq \alpha$, then $\cup X$ is an ordinal.
12. Transfinite Induction. Let $\varphi(x)$ be a first-order statement. Assume that i) $\varphi(\emptyset)$ holds, ii) If $\varphi(\alpha)$ holds, then $\varphi(\alpha + 1)$ holds also, iii) If $\varphi(\beta)$ holds for all elements β of a limit ordinal α, then $\varphi(\alpha)$ holds. Show that $\varphi(\alpha)$ holds for all ordinals α.
13. Let α be an ordinal and $X \subseteq \alpha$. Show that the set $\{y \in \alpha: y \in x$ for some $x \in X\}$ is also an ordinal.