Math 131
 Make Up Exam
 Ali Nesin
 February 2005

Show your work. Bare answers will not be accepted, not even for partial credit. Passing grade is 50 .

1. Find the remainder when 37^{126} is divided by 13. (5 pts .)
2. Show that $\sum_{i=0}^{n}(-2)^{i}\binom{n}{i}=(-1)^{n}$. (5 pts. $)$
3. Let d be the greatest common divisor of the two positive integers a and b.

3a. Show that there are integers x and y such that $a x+b y=d$. (10 pts.)
3b. Let $a=23023, b=24871$. Find d, x and y as above. (10 pts.)
4. Let $a X^{2}+b X+c \in \mathbb{Z}[X]$ have two distinct integer roots. Show that a must divide both b and c. (10 pts.)
5. Let $b, c \in \mathbb{Z}$. Show that the necessary and sufficient condition for the equation $x^{2}+b x$ $+c=0$ to have a root in \mathbb{Z} is that $b^{2}-4 c$ is a perfect square in \mathbb{Z}. (10 pts .)
6. Let $f(X) \in \mathbb{Z}[X]$ be a monic polynomial (i.e. the leading coefficient of f is 1). Show that all the rational roots of f are integers. (10 pts .)
7. Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}$ be a real polynomial with $a_{n} \neq 0$.

7a. Let α be a real root of f. Show that $|\alpha| \leq \sup \left\{1,\left|a_{n-1} / a_{n}\right|+\ldots+\left|a_{0} / a_{n}\right|\right\}$. (10 pts.)
7 b . Deduce that there is an algorithm for finding all the integer roots of a polynomial in $\mathbb{Z}[X]$. (5 pts.)
8. Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0} \in \mathbb{Z}[X]$ be a polynomial with $a_{n} \neq 0$. Let α be a rational root of f. Write $\alpha=r / s$ with $r, s \in \mathbb{Z}$ and $\operatorname{gcd}(r, s)=1$.
8 b. Show that s divides a_{n}. (10 pts .)
8c. Using \#7a show that $|r| \leq \sup \left(\left|a_{n}\right|,\left|a_{n-1}\right|+\ldots+\left|a_{0}\right|\right)$. (10 pts.)
8d. Deduce that there is an algorithm for finding all the rational roots of a polynomial in $\mathbb{Z}[X]$. (5 pts .)

