Math 112

Set Theory II

Ali Nesin
June 2003

I. Automorphisms of $(\mathbb{Q},<)$

a) Let $a, b \in \mathbb{Q}, a>0$. Let $f_{a, b}: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by $f_{a, b}(x)=a x+b$. Show that $f_{a, b}$ is an order preserving bijection.
b) Let $a, b \in \mathbb{Q}$, with $a<b$ and $k \in \mathbb{Z}$. Show that there is an order preserving bijection between the rational intervals $[k, k+1]$ and $[a, b]$.
c) Show that there are uncountably many order preserving bijections of \mathbb{Q}.

II. Automorphisms of $(\mathbb{R},+, \times)$

a) Show that any additive map f from \mathbb{Z} into \mathbb{R} is given by $f(x)=r x$ for some $r \in \mathbb{R}$.
b) Show that any additive map f from \mathbb{Q} into \mathbb{R} is given by $f(x)=r x$ for some $r \in \mathbb{R}$.
c) Show that the only additive and multiplicative map f from \mathbb{Q} into \mathbb{Q} is Id \mathbb{Q}.
d) Show that the only additive and multiplicative $\operatorname{map} f$ from \mathbb{R} into \mathbb{R} is $\operatorname{Id}_{\mathbb{R}}$.
III. For $i=1,2$, let $\left(\mathbb{R}_{i},+_{i} \times_{i}, 0_{i}, 1_{i}\right)$ be two structures satisfying the axioms of real numbers (ordered complete field). Show that there is a unique bijection $f: \mathbb{R}_{1} \rightarrow \mathbb{R}_{2}$ such that i. $f(x+1 y)=f(x)+{ }_{2} f(y)$
ii. $f\left(x \times_{1} y\right)=f(x) \times_{2} f(y)$.

