Math 112 Set Theory II Ali Nesin June 2003

I. Automorphisms of $(\mathbb{Q}, <)$

- a) Let $a, b \in \mathbb{Q}$, a > 0. Let $f_{a, b} : \mathbb{Q} \to \mathbb{Q}$ be defined by $f_{a, b}(x) = ax + b$. Show that $f_{a, b}$ is an order preserving bijection.
- b) Let $a, b \in \mathbb{Q}$, with a < b and $k \in \mathbb{Z}$. Show that there is an order preserving bijection between the rational intervals [k, k+1] and [a, b].
- c) Show that there are uncountably many order preserving bijections of \mathbb{Q} .

II. Automorphisms of $(\mathbb{R}, +, \times)$

- a) Show that any additive map *f* from \mathbb{Z} into \mathbb{R} is given by f(x) = rx for some $r \in \mathbb{R}$.
- b) Show that any additive map *f* from \mathbb{Q} into \mathbb{R} is given by f(x) = rx for some $r \in \mathbb{R}$.
- c) Show that the only additive and multiplicative map f from \mathbb{Q} into \mathbb{Q} is Id_Q.
- d) Show that the only additive and multiplicative map f from \mathbb{R} into \mathbb{R} is Id_{\mathbb{R}}.

III. For i = 1, 2, let $(\mathbb{R}_i, +_i \times_i, 0_i, 1_i)$ be two structures satisfying the axioms of real numbers (ordered complete field). Show that there is a unique bijection $f : \mathbb{R}_1 \to \mathbb{R}_2$ such that i. $f(x +_1 y) = f(x) +_2 f(y)$

ii. $f(x \times_1 y) = f(x) \times_2 f(y)$.