Math 111 / Math 113 Set Theory
 Midterm
 November 2007
 Ali Nesin

Definitions:

$0=\varnothing$.
For a set $x, S(x)=x \cup\{x\}$.
A set X is inductive if it contains 0 and if for all $x \in X, S(x)$ is also an element of X. ω is the smallest inductive set, i.e. it is the intersection of all inductive sets.

1. Show that if x and y are sets then so is $\{\{x\},\{x, y\}\}$. (7 pts.)

Proof: If x and y are sets, then there is an axiom that states that $\{x, y\}$ is a set. Taking $x=$ y, we see that $\{x\}$ is a set as well. By the same axiom $\{\{x\},\{x, y\}\}$ is a set.
2. For two sets x and y, define the pair (x, y) to be the set $\{\{x\},\{x, y\}\}$. Show that for any four sets $x, y, z, t,(x, y)=(z, t)$ if and only if $x=z$ and $y=t$. (7 pts.)
Proof: It is clear that if $x=z$ and $y=t$ then $(x, y)=(z, t)$.
Conversely, suppose that $(x, y)=(z, t)$. By definition, this means that

$$
\{\{x\},\{x, y\}\}=\{\{z\},\{z, t\}\} .
$$

Therefore the set $\{x\}$ which is an element of the set $\{\{x\},\{x, y\}\}$ is also an element of the set $\{\{z\},\{z, t\}\}$. Hence either $\{x\}=\{z\}$ or $\{x\}=\{z, t\}$. In the first case $x=z$ and in the second case $z=t=x$. Thus in both cases $x=z$. It remains to show that $y=t$. Since

$$
\{\{x\},\{x, y\}\}=\{\{z\},\{z, t\}\}
$$

and since $\{x\}=\{z\}$, we must have $\{x, y\}=\{z, t\}$. Then the equality $x=z$ forces the equality $y=t$.
3. Let X and Y be two set. Let $Z=\wp(\wp(X \cup Y))$. Show that $(x, y) \in Z$ for all $x \in X$ and y $\in Y$. (7 pts.)
Proof: Note that $\wp(\wp(X \cup Y))$ is a set by two of the axioms of set theory. Since $x \in X$ and $X \subseteq X \cup Y$, we have $x \in X \cup Y$. Similarly $y \in X \cup Y$. It follows that

$$
\{x\} \subseteq X \cup Y \text { and }\{x, y\} \subseteq X \cup Y
$$

Hence

$$
\{x\} \in \wp(X \cup Y) \text { and }\{x, y\} \in \wp(X \cup Y) .
$$

Therefore,

$$
\{\{x\},\{x, y\}\} \subseteq \wp(X \cup Y)
$$

This gives

$$
\{\{x\},\{x, y\}\} \in \wp(\wp(X \cup Y))=Z .
$$

4. Show that the collection of all pairs (x, y) for $x \in X$ and $y \in Y$ is a set. We denote this set by $X \times Y$. (7 pts .)
Proof: This is the collection $\{(x, y) \in \wp(\wp(X \cup Y)): x \in X, y \in Y\}$. To show that this is a set we will use the third axiom of set theory given in class, namely that if Z is a set and $\varphi(z)$ is a formula, then the collection $\{z \in Z: \varphi(z)\}$ is a set.
Let $\alpha(x, u)$ be $x \in u \wedge \forall t(t \in u \rightarrow t=x)$. Then $\alpha(x, u)$ holds if and only if $u=\{x\}$.
Let $\beta(x, y, v)$ be $x \in v \wedge y \in v \wedge \forall t(t \in u \rightarrow(t=x \vee t=y))$. Then $\beta(x, y, v)$ holds if and only if $v=\{x, y\}$.

Let $\gamma(x, y, z)$ be $\exists u \exists v(\alpha(x, u) \wedge \beta(x, y, v) \wedge \beta(u, v, z))$. Then $\gamma(x, y, z)$ holds if and only if z $=\{\{x\},\{x, y\}\}=(x, y)$.
Let $\varphi(z)$ be $\exists x \exists y(x \in X \wedge y \in Y \wedge \gamma(x, y, z))$. Then $\varphi(z)$ holds if and only if $z=(x, y)$ for some $x \in X$ and $y \in Y$.
Thus the collection $\{(x, y) \in \wp(\wp(X \cup Y)): x \in X, y \in Y\}$ can also be expressed as

$$
\{z \in \wp(\wp(X \cup Y)): \varphi(z)\} .
$$

Therefore by the axiom stated above (axiom of definable subsets or the axion of extensionality), this collection, i.e. $X \times Y$, is a set.
5. Show that the collection of all pairs (x, y) such that $y=S(x)$ for some $x \in \omega$ is a subset of $\omega \times \omega$. (7 pts .)
Proof: We only need to show that the collection $\{(x, y) \in \omega \times \omega: y=S(x)\}$ is a set. Since we know that $\omega \times \omega$ is a set, we only need to express the condition $y=S(x)$ as a formula $\varphi(z)$.
Let $\varepsilon(x, y, z)$ be $\forall t(t \in z \leftrightarrow t \in x \vee t \in y)$. Then $\varepsilon(x, y, z)$ holds if and only if $z=x \cup y$.
Let $\psi(x, y)$ be $\exists t(\alpha(x, t) \wedge \varepsilon(x, t, y))$. (Here the formula α is as in the previous question). Then $\psi(x, y)$ holds if and only if $y=x \cup\{x\}=S(x)$.
Thus the collection $\{(x, y) \in \omega \times \omega: y=S(x)\}$ is also the collection

$$
\{z \in \omega \times \omega: \exists x \exists y(\gamma(x, y, z) \wedge \psi(x, y)\},
$$

(here the formula γ is as in the previous question) and hence is a set by the Axiom of definable sets (the famous Axiom 3).
6. Show that for all $n, m \in \omega$, if $n \in m$ then $n \subseteq m$. (7 pts.)

Proof: We proceed by induction on m. If $m=0$, then the statement is vacuously true. Assume the statement holds for m. Let $n \in S(m)=m \cup\{m\}$. Then either $n \in m$ or $n \in$ $\{m\}$. In the first case by induction we have $n \subseteq m$; since $m \subseteq m \cup\{m\}=S(m)$, in that case we get $n \subseteq S(m)$. In the second case we nmust have $m=n$ and again $n=m \subseteq m \cup\{m\}=$ $S(m)$.
7. Show that for all $n, m \in \omega$, if $S(n)=S(m)$ then either $n \in m$ or $n=m$. (7 pts.)

Proof: Assume $S(n)=S(m)$. Then, by definition, $n \cup\{n\}=m \cup\{m\}$. Since n is an element of the set $n \cup\{n\}$, this implies that $n \in m \cup\{m\}$. Thus either $n \in m$ or $n \in\{m\}$. In the second case we get $n=m$.
8. Show that $S: \omega \rightarrow \omega$ is a one-to-one function. (7 pts.)

Proof: Assume that for $n, m \in \omega, S(n)=S(m)$ but that $n \neq m$. By question 7, either $n \in m$ or $n=m$. Therefore $n \in m$. By question $6, n \subseteq m$. By symmetry $m \subseteq n$. Hence $n=m$.
9. Show that $S(\omega)=\omega \backslash\{0\}$. (7 pts. Note: Here $S(\omega)$ denotes the image of ω under the function ω and is not $\omega \cup\{\omega\}$.)
Proof: Since $S(n)=n \cup\{n\}, S(n)$ can never be empty, i.e. $S(n) \neq 0$ and so $S(\omega) \subseteq \omega \backslash\{0\}$. Conversely, we will show that for any $n \in \omega$, either $n=0$ or $n=S(m)$ for some $m \in \omega$. We proceed by induction. If $n=0$ the statements holds trivially. Suppose the statement holds for n (we really will not care that the statement holds for n) and show it for $S(n)$. Thus we have to show that $S(n)$ is the S-image of some m. But $S(n)$ is of course S of something, namely of $n \ldots$
10. Show that for any $n \in \omega, n \notin n$. (7 pts.)

Proof: We proceed by induction on n. If $n=0$, then $n=\varnothing$ and of course $n \notin n$. Assume that $n \notin n$ and show that $S(n) \notin S(n)$. Assume to the contrary that $S(n) \in S(n)=n \cup\{n\}$. Then either $S(n) \in n$ or $S(n)=n$. Bu question $6, S(n) \subseteq n$ in both cases. But since, $n \in n \cup$ $\{n\}=S(n)$, this implies that $n \in n$, a contradiction.
11. For $n, m \in \omega$ define the binary relation $n<m$ by $n \in m$. Show that this relation is an order on ω. (7 pts.)
Proof: We need to show that for all $n, m, k \in \omega$, we have
a) $n \notin n$
and
b) if $n \in m$ and $m \in k$ then $n \in k$.

The first one is given bu question 10. Assume now $n \in m \in k$. By question $6, n \in m \subseteq k$. Hence $n \in k$.
12. Show that the order $<$ is a total order. (7 pts.)

Proof: We first need a lemma.
Lemma: For all $n, m \in \omega$, if $n \in m$ then either $S(n) \in m$ or $S(n)=m$.
Proof: We proceed by induction on m. If $m=0$ there is nothing to prove. Assume now that m is given so that the statement

For all $n \in \omega$, if $n \in m$ then either $S(n) \in m$ or $S(n)=m$.
holds (the inductive hyothesis). We will show that
For all $n \in \omega$, if $n \in S(m)$ then either $S(n) \in S(m)$ or $S(n)=S(m)$.
Let $n \in S(m)$ be any. We will show that either $S(n) \in S(m)$ or $S(n)=S(m)$. Since $n \in S(m)$ $=m \cup\{m\}$, either $n \in m$ or $n=m$. In the second case $S(n)=S(m)$. In the first case, by induction, either $S(n) \in m$ or $S(n)=m$ and in both cases $S(n) \in S(m)$. This proves the lemma.

Now we show that

$$
\text { for all } m \in \omega \text {, either } n \in m \text { or } n=m \text { or } m \in n
$$

by induction on n. Assume first $n=0$ and choose an $m \in \omega$. Since $m \in 0$ is impossible we need to show that

$$
\text { either } 0=m \text { or } 0 \in m \text {. }
$$

We do this by induction on m. If $m=0$ there is nothing to prove. Assume that this holds for m, we prove it for $S(m)$. If $m=0,0=m \in S(m)$. If $m \neq 0$, then $0 \in m \subseteq S(m)$. Thus the statement is proved for $n=0$.
Assume now that

$$
\text { for any } m \text {, either } n \in m \text { or } n=m \text { or } m \in n \text {. }
$$

We will show that the same statement holds for $S(n)$ instead of n, namely that
for any m, either $S(n) \in m$ or $S(n)=m$ or $m \in S(n)$.
Let $m \in \omega$ be any. By induction we have three possibilities

$$
n \in m \text { or } n=m \text { or } m \in n .
$$

In the second case, $m=n \in S(n)$ and we are done.
In the third case, $m \in n \subseteq S(n)$ and we are done again.
We are left with the first case $n \in m$. But this case is dealt by the lemma above.
13. Show that any nonempty subset of ω has a least element for this order. (8 pts.$)$

Proof: Let X be a nonempty subset of ω. Assume that X does not have a least element. We will first show by induction on n that

$$
\text { for all } m<n, m \notin X \text {. }
$$

If $n=0$ this holds trivially. Assume that the statement holds for n. Let $m<S(n)$. Thus $m \in$ $S(n)=n \cup\{n\}$ and either $m \in n$ or $m=n$. In the first case $m<n$ and by induction m cannot be an element of X. In the second case, if n were an element of X, then n would be the least element of X because of the inductive hypothesis; thus $n \notin X$ either. Therefore the statement is proved. Now we show that $X=\varnothing$. Assume $n \in X$. Then $n<S(n)$ and the statement which has just been proven is false for $S(n)$, a contradiction. Therefore $X=\varnothing$.
14. Show that for any nonempty subset X of ω there is an element $x \in X$ such that $x \cap X=$ \varnothing. (8 pts.)
Proof: Let x be the least element of X. (It exists by question 13). If $y \in x \cap X$, then y would be an element of X which is smaller than x, a contradiction. Thus $x \cap X=\varnothing$.

