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Definitions: 

0 = ∅. 

For a set x, S(x) = x ∪ {x}. 

A set X is inductive if it contains 0 and if for all x ∈ X, S(x) is also an element of X. 

ω is the smallest inductive set, i.e. it is the intersection of all inductive sets. 

 

1. Show that if x and y are sets then so is {{x}, {x, y}}. (7 pts.) 

Proof: If x and y are sets, then there is an axiom that states that {x, y} is a set. Taking x = 

y, we see that {x} is a set as well. By the same axiom {{x}, {x, y}} is a set. 

 

2. For two sets x and y, define the pair (x, y) to be the set {{x}, {x, y}}. Show that for 

any four sets x, y, z, t, (x, y) = (z, t) if and only if x = z and y = t. (7 pts.) 

Proof: It is clear that if x = z and y = t then (x, y) = (z, t).  

Conversely, suppose that (x, y) = (z, t). By definition, this means that  

{{x}, {x, y}} = {{z}, {z, t}}. 

Therefore the set {x} which is an element of the set {{x}, {x, y}} is also an element of the 

set {{z}, {z, t}}. Hence either {x} = {z} or {x} = {z, t}. In the first case x = z and in the 

second case z = t = x. Thus in both cases x = z. It remains to show that y = t. Since  

{{x}, {x, y}} = {{z}, {z, t}} 

and since {x} = {z}, we must have {x, y} = {z, t}. Then the equality x = z forces the 

equality y = t. 

 

3. Let X and Y be two set. Let Z = ℘(℘(X ∪ Y)). Show that (x, y) ∈ Z for all x ∈ X and y 

∈ Y. (7 pts.) 

Proof: Note that ℘(℘(X ∪ Y)) is a set by two of the axioms of set theory. Since x ∈ X 

and X ⊆ X ∪ Y, we have x ∈ X ∪ Y. Similarly y ∈ X ∪ Y. It follows that  

{x} ⊆ X ∪ Y and {x, y} ⊆ X ∪ Y. 

Hence 

{x} ∈ ℘(X ∪ Y) and {x, y} ∈ ℘(X ∪ Y). 

Therefore, 

{{x}, {x, y}} ⊆ ℘(X ∪ Y). 

This gives 

{{x}, {x, y}} ∈ ℘(℘(X ∪ Y)) = Z. 

 

4. Show that the collection of all pairs (x, y) for x ∈ X and y ∈ Y is a set. We denote this 

set by X × Y. (7 pts.) 

Proof: This is the collection {(x, y) ∈ ℘(℘(X ∪ Y)) : x ∈ X, y ∈ Y}. To show that this is 

a set we will use the third axiom of set theory given in class, namely that if Z is a set and 

ϕ(z) is a formula, then the collection {z ∈ Z : ϕ(z)} is a set. 

Let α(x, u) be x ∈ u ∧ ∀t (t ∈ u → t = x). Then α(x, u) holds if and only if u = {x}. 

Let β(x, y, v) be x ∈ v ∧ y ∈ v ∧ ∀t (t ∈ u → (t = x ∨ t = y)). Then β(x, y, v) holds if and 

only if v = {x, y}. 



Let γ(x, y, z) be ∃u ∃v (α(x, u) ∧ β(x, y, v) ∧ β(u, v, z)). Then γ(x, y, z) holds if and only if z 

= {{x}, {x, y}} = (x, y). 

Let ϕ(z) be ∃x ∃y (x ∈ X ∧ y ∈ Y ∧ γ(x, y, z)). Then ϕ(z) holds if and only if z = (x, y) for 

some x ∈ X and y∈ Y. 

Thus the collection {(x, y) ∈ ℘(℘(X ∪ Y)) : x ∈ X, y ∈ Y} can also be expressed as 

{z ∈ ℘(℘(X ∪ Y)) : ϕ(z)}. 

Therefore by the axiom stated above (axiom of definable subsets or the axion of 

extensionality), this collection, i.e. X × Y, is a set. 

 

5. Show that the collection of all pairs (x, y) such that y = S(x) for some x ∈ ω is a subset 

of ω × ω. (7 pts.) 

Proof: We only need to show that the collection {(x, y) ∈ ω × ω : y = S(x)} is a set. Since 

we know that ω × ω is a set, we only need to express the condition y = S(x) as a formula 

ϕ(z). 

Let ε(x, y, z) be ∀t (t ∈ z ↔ t ∈ x ∨ t ∈ y). Then ε(x, y, z) holds if and only if z = x ∪ y. 

Let ψ(x, y) be ∃t (α(x, t) ∧ ε(x, t, y)). (Here the formula α is as in the previous question). 

Then ψ(x, y) holds if and only if y = x ∪ {x} = S(x). 

Thus the collection {(x, y) ∈ ω × ω : y = S(x)} is also the collection 

{z ∈ ω × ω : ∃x ∃y (γ(x, y, z) ∧ ψ(x, y)}, 

(here the formula γ is as in the previous question) and hence is a set by the Axiom of 

definable sets (the famous Axiom 3). 

 

6. Show that for all n, m ∈ ω, if n ∈ m then n ⊆ m. (7 pts.) 

Proof: We proceed by induction on m. If m = 0, then the statement is vacuously true. 

Assume the statement holds for m. Let n ∈ S(m) = m ∪ {m}. Then either n ∈ m or n ∈ 

{m}. In the first case by induction we have n ⊆ m; since m ⊆ m ∪ {m} = S(m), in that case 

we get n ⊆ S(m). In the second case we nmust have m = n and again n = m ⊆ m ∪ {m} = 

S(m). 

 

7. Show that for all n, m ∈ ω, if S(n) = S(m) then either n ∈ m or n = m. (7 pts.) 

Proof: Assume S(n) = S(m). Then, by definition, n ∪ {n} = m ∪ {m}. Since n is an 

element of the set n ∪ {n}, this implies that n ∈ m ∪ {m}. Thus either n ∈ m or n ∈ {m}. 

In the second case we get n = m. 

 

8. Show that S : ω → ω is a one-to-one function. (7 pts.) 

Proof: Assume that for n, m ∈ ω, S(n) = S(m) but that n ≠ m. By question 7, either n ∈ m 

or n = m. Therefore n ∈ m. By question 6, n ⊆ m. By symmetry m ⊆ n. Hence n = m. 

 

9. Show that S(ω) = ω \ {0}. (7 pts. Note: Here S(ω) denotes the image of ω under the 

function ω and is not ω ∪ {ω}.) 

Proof: Since S(n) = n ∪ {n}, S(n) can never be empty, i.e. S(n) ≠ 0 and so S(ω) ⊆ ω \ {0}. 

Conversely, we will show that for any n ∈ ω, either n = 0 or n = S(m) for some m ∈ ω. 

We proceed by induction. If n = 0 the statements holds trivially. Suppose the statement 

holds for n (we really will not care that the statement holds for n) and show it for S(n). 

Thus we have to show that S(n) is the S-image of some m. But S(n) is of course S of 

something, namely of n...  

 

 



10. Show that for any n ∈ ω, n ∉ n. (7 pts.) 

Proof: We proceed by induction on n. If n = 0, then n = ∅ and of course n ∉ n. Assume 

that n ∉ n and show that S(n) ∉ S(n). Assume to the contrary that S(n) ∈ S(n) = n ∪ {n}. 

Then either S(n) ∈ n or S(n) = n. Bu question 6, S(n) ⊆ n in both cases. But since, n ∈ n ∪ 

{n} = S(n), this implies that n ∈ n, a contradiction. 

 

11. For n, m ∈ ω define the binary relation n < m by n ∈ m. Show that this relation is an 

order on ω. (7 pts.) 

Proof: We need to show that for all n, m, k ∈ ω, we have 

a) n ∉ n  

and  

b) if n ∈ m and m ∈ k then n ∈ k.  

The first one is given bu question 10. Assume now n ∈ m ∈ k. By question 6, n ∈ m ⊆ k. 

Hence n ∈ k. 

 

12. Show that the order < is a total order. (7 pts.) 

Proof: We first need a lemma. 

 

Lemma: For all n, m ∈ ω, if n ∈ m then either S(n) ∈ m or S(n) = m. 

Proof: We proceed by induction on m. If m = 0 there is nothing to prove. Assume now 

that m is given so that the statement  

For all n ∈ ω, if n ∈ m then either S(n) ∈ m or S(n) = m. 

holds (the inductive hyothesis). We will show that 

For all n ∈ ω, if n ∈ S(m) then either S(n) ∈ S(m) or S(n) = S(m). 

Let n ∈ S(m) be any. We will show that either S(n) ∈ S(m) or S(n) = S(m). Since n ∈ S(m) 

= m ∪ {m}, either n ∈ m or n = m. In the second case S(n) = S(m). In the first case, by 

induction, either S(n) ∈ m or S(n) = m and in both cases S(n) ∈ S(m). This proves the 

lemma.  

 

Now we show that  

for all m ∈ ω, either n ∈ m or n = m or m ∈ n 

by induction on n. Assume first n = 0 and choose an m ∈ ω. Since m ∈ 0 is impossible we 

need to show that  

either 0 = m or 0 ∈ m. 

We do this by induction on m. If m = 0 there is nothing to prove. Assume that this holds 

for m, we prove it for S(m). If m = 0, 0 = m ∈ S(m). If m ≠ 0, then 0 ∈ m ⊆ S(m). Thus the 

statement is proved for n = 0. 

Assume now that  

for any m, either n ∈ m or n = m or m ∈ n. 

We will show that the same statement holds for S(n) instead of n, namely that 

for any m, either S(n) ∈ m or S(n) = m or m ∈ S(n). 

Let m ∈ ω be any. By induction we have three possibilities  

n ∈ m or n = m or m ∈ n. 

In the second case, m = n ∈ S(n) and we are done. 

In the third case, m ∈ n ⊆ S(n) and we are done again. 

We are left with the first case n ∈ m. But this case is dealt by the lemma above. 

 

 



13. Show that any nonempty subset of ω has a least element for this order. (8 pts.) 

Proof: Let X be a nonempty subset of ω. Assume that X does not have a least element. We 

will first show by induction on n that 

for all m < n, m ∉ X. 

If n = 0 this holds trivially. Assume that the statement holds for n. Let m < S(n). Thus m ∈ 

S(n) = n ∪ {n} and either m ∈ n or m = n. In the first case m < n and by induction m 

cannot be an element of X. In the second case, if n were an element of X, then n would be 

the least element of X because of the inductive hypothesis; thus n ∉ X either. Therefore 

the statement is proved. Now we show that X = ∅. Assume n ∈ X. Then n < S(n) and the 

statement which has just been proven is false for S(n), a contradiction. Therefore X = ∅. 

 

14. Show that for any nonempty subset X of ω there is an element x ∈ X such that x ∩ X = 

∅. (8 pts.) 

Proof: Let x be the least element of X. (It exists by question 13). If y ∈ x ∩ X, then y 

would be an element of X which is smaller than x, a contradiction. Thus x ∩ X = ∅. 

 


