Math 111 / Math 113 Set Theory Midterm November 2007 Ali Nesin

Definitions:

 $0 = \emptyset$. For a set *x*, $S(x) = x \cup \{x\}$. A set *X* is *inductive* if it contains 0 and if for all $x \in X$, S(x) is also an element of *X*. ω is the smallest inductive set, i.e. it is the intersection of all inductive sets.

1. Show that if x and y are sets then so is $\{\{x\}, \{x, y\}\}$. (7 pts.)

Proof: If x and y are sets, then there is an axiom that states that $\{x, y\}$ is a set. Taking x = y, we see that $\{x\}$ is a set as well. By the same axiom $\{\{x\}, \{x, y\}\}$ is a set.

- 2. For two sets x and y, define the **pair** (x, y) to be the set $\{\{x\}, \{x, y\}\}$. Show that for any four sets x, y, z, t, (x, y) = (z, t) if and only if x = z and y = t. (7 pts.)
- **Proof:** It is clear that if x = z and y = t then (x, y) = (z, t).

Conversely, suppose that (x, y) = (z, t). By definition, this means that $\{\{x\}, \{x, y\}\} = \{\{z\}, \{z, t\}\}.$

Therefore the set $\{x\}$ which is an element of the set $\{\{x\}, \{x, y\}\}$ is also an element of the set $\{\{z\}, \{z, t\}\}$. Hence either $\{x\} = \{z\}$ or $\{x\} = \{z, t\}$. In the first case x = z and in the second case z = t = x. Thus in both cases x = z. It remains to show that y = t. Since $\{\{x\}, \{x, y\}\} = \{\{z\}, \{z, t\}\}$

and since $\{x\} = \{z\}$, we must have $\{x, y\} = \{z, t\}$. Then the equality x = z forces the equality y = t.

3. Let X and Y be two set. Let $Z = \wp(\wp(X \cup Y))$. Show that $(x, y) \in Z$ for all $x \in X$ and $y \in Y$. (7 pts.)

Proof: Note that $\wp(\wp(X \cup Y))$ is a set by two of the axioms of set theory. Since $x \in X$ and $X \subseteq X \cup Y$, we have $x \in X \cup Y$. Similarly $y \in X \cup Y$. It follows that

 $\{x\} \subseteq X \cup Y \text{ and } \{x, y\} \subseteq X \cup Y.$

Hence

$$\{x\} \in \mathcal{O}(X \cup Y) \text{ and } \{x, y\} \in \mathcal{O}(X \cup Y).$$

Therefore,

 $\{\{x\}, \{x, y\}\} \subseteq \wp(X \cup Y).$

This gives

$$\{\{x\}, \{x, y\}\} \in \mathcal{O}(\mathcal{O}(X \cup Y)) = Z.$$

4. Show that the collection of all pairs (x, y) for $x \in X$ and $y \in Y$ is a set. We denote this set by $X \times Y$. (7 pts.)

Proof: This is the collection $\{(x, y) \in \mathcal{O}(\mathcal{O}(X \cup Y)) : x \in X, y \in Y\}$. To show that this is a set we will use the third axiom of set theory given in class, namely that if *Z* is a set and $\varphi(z)$ is a formula, then the collection $\{z \in Z : \varphi(z)\}$ is a set.

Let $\alpha(x, u)$ be $x \in u \land \forall t \ (t \in u \to t = x)$. Then $\alpha(x, u)$ holds if and only if $u = \{x\}$.

Let $\beta(x, y, v)$ be $x \in v \land y \in v \land \forall t \ (t \in u \rightarrow (t = x \lor t = y))$. Then $\beta(x, y, v)$ holds if and only if $v = \{x, y\}$.

Let $\gamma(x, y, z)$ be $\exists u \exists v (\alpha(x, u) \land \beta(x, y, v) \land \beta(u, v, z))$. Then $\gamma(x, y, z)$ holds if and only if $z = \{\{x\}, \{x, y\}\} = (x, y)$.

Let $\varphi(z)$ be $\exists x \exists y (x \in X \land y \in Y \land \gamma(x, y, z))$. Then $\varphi(z)$ holds if and only if z = (x, y) for some $x \in X$ and $y \in Y$.

Thus the collection $\{(x, y) \in \wp(\wp(X \cup Y)) : x \in X, y \in Y\}$ can also be expressed as $\{z \in \wp(\wp(X \cup Y)) : \varphi(z)\}.$

Therefore by the axiom stated above (axiom of definable subsets or the axion of extensionality), this collection, i.e. $X \times Y$, is a set.

5. Show that the collection of all pairs (x, y) such that y = S(x) for some $x \in \omega$ is a subset of $\omega \times \omega$. (7 pts.)

Proof: We only need to show that the collection $\{(x, y) \in \omega \times \omega : y = S(x)\}$ is a set. Since we know that $\omega \times \omega$ is a set, we only need to express the condition y = S(x) as a formula $\varphi(z)$.

Let $\varepsilon(x, y, z)$ be $\forall t \ (t \in z \leftrightarrow t \in x \lor t \in y)$. Then $\varepsilon(x, y, z)$ holds if and only if $z = x \cup y$.

Let $\psi(x, y)$ be $\exists t \ (\alpha(x, t) \land \varepsilon(x, t, y))$. (Here the formula α is as in the previous question). Then $\psi(x, y)$ holds if and only if $y = x \cup \{x\} = S(x)$.

Thus the collection $\{(x, y) \in \omega \times \omega : y = S(x)\}$ is also the collection

 $\{z \in \omega \times \omega : \exists x \exists y (\gamma(x, y, z) \land \psi(x, y))\},\$

(here the formula γ is as in the previous question) and hence is a set by the Axiom of definable sets (the famous Axiom 3).

6. Show that for all $n, m \in \omega$, if $n \in m$ then $n \subseteq m$. (7 pts.)

Proof: We proceed by induction on *m*. If m = 0, then the statement is vacuously true. Assume the statement holds for *m*. Let $n \in S(m) = m \cup \{m\}$. Then either $n \in m$ or $n \in \{m\}$. In the first case by induction we have $n \subseteq m$; since $m \subseteq m \cup \{m\} = S(m)$, in that case we get $n \subseteq S(m)$. In the second case we nmust have m = n and again $n = m \subseteq m \cup \{m\} = S(m)$.

7. Show that for all $n, m \in \omega$, if S(n) = S(m) then either $n \in m$ or n = m. (7 pts.)

Proof: Assume S(n) = S(m). Then, by definition, $n \cup \{n\} = m \cup \{m\}$. Since *n* is an element of the set $n \cup \{n\}$, this implies that $n \in m \cup \{m\}$. Thus either $n \in m$ or $n \in \{m\}$. In the second case we get n = m.

8. Show that $S: \omega \to \omega$ is a one-to-one function. (7 pts.)

Proof: Assume that for $n, m \in \omega$, S(n) = S(m) but that $n \neq m$. By question 7, either $n \in m$ or n = m. Therefore $n \in m$. By question 6, $n \subseteq m$. By symmetry $m \subseteq n$. Hence n = m.

9. Show that $S(\omega) = \omega \setminus \{0\}$. (7 pts. Note: Here $S(\omega)$ denotes the image of ω under the function ω and is not $\omega \cup \{\omega\}$.)

Proof: Since $S(n) = n \cup \{n\}$, S(n) can never be empty, i.e. $S(n) \neq 0$ and so $S(\omega) \subseteq \omega \setminus \{0\}$. Conversely, we will show that for any $n \in \omega$, either n = 0 or n = S(m) for some $m \in \omega$. We proceed by induction. If n = 0 the statements holds trivially. Suppose the statement holds for n (we really will not care that the statement holds for n) and show it for S(n). Thus we have to show that S(n) is the S-image of some m. But S(n) is of course S of something, namely of n... 10. Show that for any $n \in \omega$, $n \notin n$. (7 pts.)

Proof: We proceed by induction on *n*. If n = 0, then $n = \emptyset$ and of course $n \notin n$. Assume that $n \notin n$ and show that $S(n) \notin S(n)$. Assume to the contrary that $S(n) \in S(n) = n \cup \{n\}$. Then either $S(n) \in n$ or S(n) = n. Bu question 6, $S(n) \subseteq n$ in both cases. But since, $n \in n \cup \{n\} = S(n)$, this implies that $n \in n$, a contradiction.

11. For $n, m \in \omega$ define the binary relation n < m by $n \in m$. Show that this relation is an order on ω . (7 pts.)

Proof: We need to show that for all $n, m, k \in \omega$, we have

a) *n*∉ *n*

and

b) if $n \in m$ and $m \in k$ then $n \in k$.

The first one is given bu question 10. Assume now $n \in m \in k$. By question 6, $n \in m \subseteq k$. Hence $n \in k$.

12. *Show that the order < is a total order*. (7 pts.) **Proof:** We first need a lemma.

Lemma: For all $n, m \in \omega$, if $n \in m$ then either $S(n) \in m$ or S(n) = m. **Proof:** We proceed by induction on *m*. If m = 0 there is nothing to prove. Assume now that *m* is given so that the statement

For all $n \in \omega$, if $n \in m$ then either $S(n) \in m$ or S(n) = m. holds (the inductive hypothesis). We will show that

For all $n \in \omega$, if $n \in S(m)$ then either $S(n) \in S(m)$ or S(n) = S(m).

Let $n \in S(m)$ be any. We will show that either $S(n) \in S(m)$ or S(n) = S(m). Since $n \in S(m) = m \cup \{m\}$, either $n \in m$ or n = m. In the second case S(n) = S(m). In the first case, by induction, either $S(n) \in m$ or S(n) = m and in both cases $S(n) \in S(m)$. This proves the lemma.

Now we show that

for all $m \in \omega$, either $n \in m$ or n = m or $m \in n$

by induction on *n*. Assume first n = 0 and choose an $m \in \omega$. Since $m \in 0$ is impossible we need to show that

either 0 = m or $0 \in m$.

We do this by induction on *m*. If m = 0 there is nothing to prove. Assume that this holds for *m*, we prove it for S(m). If m = 0, $0 = m \in S(m)$. If $m \neq 0$, then $0 \in m \subseteq S(m)$. Thus the statement is proved for n = 0.

Assume now that

for any *m*, either $n \in m$ or n = m or $m \in n$.

We will show that the same statement holds for S(n) instead of n, namely that

for any *m*, either $S(n) \in m$ or S(n) = m or $m \in S(n)$.

Let $m \in \omega$ be any. By induction we have three possibilities

 $n \in m$ or n = m or $m \in n$.

In the second case, $m = n \in S(n)$ and we are done.

In the third case, $m \in n \subseteq S(n)$ and we are done again.

We are left with the first case $n \in m$. But this case is dealt by the lemma above.

13. Show that any nonempty subset of ω has a least element for this order. (8 pts.) **Proof:** Let *X* be a nonempty subset of ω . Assume that *X* does not have a least element. We will first show by induction on *n* that

for all $m < n, m \notin X$.

If n = 0 this holds trivially. Assume that the statement holds for n. Let m < S(n). Thus $m \in S(n) = n \cup \{n\}$ and either $m \in n$ or m = n. In the first case m < n and by induction m cannot be an element of X. In the second case, if n were an element of X, then n would be the least element of X because of the inductive hypothesis; thus $n \notin X$ either. Therefore the statement is proved. Now we show that $X = \emptyset$. Assume $n \in X$. Then n < S(n) and the statement which has just been proven is false for S(n), a contradiction. Therefore $X = \emptyset$.

14. Show that for any nonempty subset X of ω there is an element $x \in X$ such that $x \cap X = \emptyset$. (8 pts.)

Proof: Let *x* be the least element of *X*. (It exists by question 13). If $y \in x \cap X$, then *y* would be an element of *X* which is smaller than *x*, a contradiction. Thus $x \cap X = \emptyset$.