## Math 111 Resit

Ali Nesin
July $11^{\text {th }}, 2000$
1a. Find a nonempty set $A$ such that $A \cap \wp(A)=\varnothing$.
1b. Find a set $A$ such that $A \cap \wp(A) \neq \varnothing$.
1c. Is there a set $A$ such that $\wp(A) \cap \wp(\wp(A))=\varnothing$ ?
2a. Let $A$ be a set and let $B=\{x \in A: x \notin x\}$. Without using the axiom of regularity ${ }^{1}$, show that $B \notin A$. Conclude that $B \notin B$.
3. Let $a$ and $b$ be two integers.

3a. Show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$.
3b. Let $d$ be the greatest common divisor of $a$ and $b$. Show that there are integers $x$ and $y$ such that $x a+y b=d$.
4. Let $a<b$ be two fixed real numbers. Find (explicitely) a bijection $f_{a, b}$ between the open intervals $(0,1)$ and $(a, b)$. What is its inverse? What is $f_{a, b} \circ f_{c, d}{ }^{-1}$ ?
5. A set $X$ is called complete if every element of $X$ is a subset of $X$.

5a. Give infinitely many examples of complete sets.
$\mathbf{5 b}$. Show that if $A$ is a set of complete sets, then $\cap A$ and $\cup A$ are also complete.
5c. Show that if $X$ is complete, then $X \cup\{X\}$ is also complete.
6. A set $X$ is $\in$-connected if for any two distinct elements $x, y$ of $X$, either $x \in y$ or $y \in x$.

6a. Give infinitely many examples of $\in$-connected sets.
6b. Show that a subset of an $\in$-connected set is $\in$-connected.
6c. Show that if $X$ is $\in$-connected, then $X \cup\{X\}$ is also $\in$-connected.
7. Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ be an increasing and $\left(b_{i}\right)_{i \in \mathbb{N}}$ a decreasing sequence of real numbers with $a_{n}$ $<b_{m}$ for all $n, m \in \mathbb{N}$. Show that $\bigcap_{i \in N}\left[a_{i}, b_{i}\right] \neq \varnothing$. Show that this result is false for the set $\mathbb{Q}$ of rational numbers.
8. Can you find an increasing sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ and a decreasing sequence $\left(b_{i}\right)_{i \in \mathbb{N}}$ of real numbers with $a_{n}<b_{m}$ for all $n, m \in \mathbb{N}$ such that $\bigcap_{i \in N}\left[a_{i}, b_{i}\right)=\varnothing$ ?
9. Let $a$ and $b$ be two real numbers. Show that if the closed interval $[a, b]$ is covered by a set of open intervals, then only finitely many of these intervals is enough to cover $[a, b]$.
10. Let $x \in \mathbb{R}$. Show that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges.

[^0]11. [Cantor-Schröder-Bernstein] Let $A$ be a set and $A^{\prime}$ a subset of $A$. Assume that there is a bijection $f: A \rightarrow A^{\prime}$ betweeen $A$ and $A^{\prime}$. Let $B$ be any set such that $A^{\prime} \subseteq B \subseteq A$. The purpose of this exercise is to show that there is a bijection between $B$ and $A$.

Let $Q=B \backslash A^{\prime}$.
Let $\Gamma=\{X \subseteq A: Q \cup f(X) \subseteq X\}$.
Let $T=\cap \Gamma=\bigcap_{X \in \Gamma} X$.
11a. Show that $T \in \Gamma$.
11b. Show that $Q \cup f(T) \in \Gamma$.
11c. Show that $T=Q \cup f(T)$. (Hint: Use a and b).
11d. Show that $B=T \cup\left(A^{\prime} \backslash f(T)\right)$. (Hint: Use c).
11e. Show that $T \cap\left(A^{\prime} \backslash f(T)\right)=\varnothing$.
11f. Show that there is a bijection between $B$ and $A$. (Hint: Use parts d and e).


[^0]:    ${ }^{1}$ If you do not know the axiom of regularity, just ignore it.

