Math 111 Resit

Ali Nesin July 11th, 2000

1a. Find a nonempty set *A* such that $A \cap \wp(A) = \emptyset$. **1b.** Find a set *A* such that $A \cap \wp(A) \neq \emptyset$. **1c.** Is there a set *A* such that $\wp(A) \cap \wp(\wp(A)) = \emptyset$?

2a. Let *A* be a set and let $B = \{x \in A : x \notin x\}$. Without using the axiom of regularity¹, show that $B \notin A$. Conclude that $B \notin B$.

3. Let *a* and *b* be two integers.

3a. Show that gcd(a, b) = gcd(a - b, b).

3b. Let *d* be the greatest common divisor of *a* and *b*. Show that there are integers *x* and *y* such that xa + yb = d.

4. Let a < b be two fixed real numbers. Find (explicitly) a bijection $f_{a,b}$ between the open intervals (0, 1) and (*a*, *b*). What is its inverse? What is $f_{a,b} \circ f_{c,d}^{-1}$?

5. A set *X* is called **complete** if every element of *X* is a subset of *X*.

5a. Give infinitely many examples of complete sets.

5b. Show that if A is a set of complete sets, then $\cap A$ and $\cup A$ are also complete.

5c. Show that if *X* is complete, then $X \cup \{X\}$ is also complete.

6. A set *X* is \in -connected if for any two distinct elements *x*, *y* of *X*, either $x \in y$ or $y \in x$. **6a.** Give infinitely many examples of \in -connected sets.

6b. Show that a subset of an \in -connected set is \in -connected.

6c. Show that if *X* is \in -connected, then $X \cup \{X\}$ is also \in -connected.

7. Let $(a_i)_{i \in \mathbb{N}}$ be an increasing and $(b_i)_{i \in \mathbb{N}}$ a decreasing sequence of real numbers with $a_n < b_m$ for all $n, m \in \mathbb{N}$. Show that $\bigcap_{i \in \mathbb{N}} [a_i, b_i] \neq \emptyset$. Show that this result is false for the set \mathbb{Q} of rational numbers.

8. Can you find an increasing sequence $(a_i)_{i \in \mathbb{N}}$ and a decreasing sequence $(b_i)_{i \in \mathbb{N}}$ of real numbers with $a_n < b_m$ for all $n, m \in \mathbb{N}$ such that $\bigcap_{i \in \mathbb{N}} [a_i, b_i] = \emptyset$?

9. Let *a* and *b* be two real numbers. Show that if the closed interval [a, b] is covered by a set of open intervals, then only finitely many of these intervals is enough to cover [a, b].

10. Let $x \in \mathbb{R}$. Show that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges.

¹ If you do not know the axiom of regularity, just ignore it.

11. [Cantor-Schröder-Bernstein] Let *A* be a set and *A'* a subset of *A*. Assume that there is a bijection $f: A \to A'$ between *A* and *A'*. Let *B* be any set such that $A' \subseteq B \subseteq A$. The purpose of this exercise is to show that there is a bijection between *B* and *A*.

Let $Q = B \setminus A'$. Let $\Gamma = \{X \subseteq A : Q \cup f(X) \subseteq X\}$. Let $T = \cap \Gamma = \bigcap_{X \in \Gamma} X$. **11a**. Show that $T \in \Gamma$. **11b**. Show that $Q \cup f(T) \in \Gamma$. **11c**. Show that $T = Q \cup f(T)$. (Hint: Use a and b). **11d**. Show that $B = T \cup (A' \setminus f(T))$. (Hint: Use c). **11e**. Show that $T \cap (A' \setminus f(T)) = \emptyset$. **11f**. Show that there is a bijection between *B* and *A*. (Hint: Use parts d and e).