Math 111

Midterm 3
April 1999
Özlem Beyarslan - Ali Nesin

1. A set X is called complete if every element of X is a subset of X.

1a. Give infinitely many examples of complete sets.
1b. Show that if A is a set of complete sets, then $\cap A$ and $\cup A$ are also complete.
1c. Show that if X is complete, then $X \cup\{X\}$ is complete.
1d. Let X be any set. Define $X_{0}=X$ and $X_{n+1}=X_{n} \cup\left(\cup X_{n}\right)$. Let $X_{\omega}=\bigcup_{n \in \mathrm{~N}} X_{n}$.
Assuming X_{ω} is a set, show that X_{ω} is the smallest complete set containing X.
1f. Assume $\{x\}$ is complete. What can you say about x ?
2. What can you say about X if $X \cup\{X\}=X$.
3. A set X is \in-connected if for any two distinct elements x, y of X, either $x \in y$ or $y \in x$.

3a. Give infinitely many examples of ϵ-connected sets.
3b. Show that a subset of an \in-connected set is \in-connected.
3c. Show that if X is \in-connected, then $X \cup\{X\}$ is also \in-connected.
3d. Assume $\{x\}$ is \in-connected. What can you say about x ?
4. Axiom of Regularity says that every nonempty set A has an element x such that $A \cap x=\varnothing$.

4a. Assuming the Axiom of Regularity show that no set x is a member of itself.
4b. Assuming the Axiom of Regularity show that there are no sets x and y such that $x \in y$ and $y \in x$.

4c. Assuming the Axiom of Regularity show that if $A \subseteq A \times A$, then $A=\varnothing$.

