Math 111

Midterm 3 April 1999 Özlem Beyarslan - Ali Nesin

1. A set *X* is called **complete** if every element of *X* is a subset of *X*.

1a. Give infinitely many examples of complete sets.

1b. Show that if A is a set of complete sets, then $\cap A$ and $\cup A$ are also complete.

1c. Show that if *X* is complete, then $X \cup \{X\}$ is complete.

1d. Let X be any set. Define $X_0 = X$ and $X_{n+1} = X_n \cup (\bigcup X_n)$. Let $X_0 = \bigcup_{n \in \mathbb{N}} X_n$.

Assuming X_{ω} is a set, show that X_{ω} is the smallest complete set containing X. **1f.** Assume $\{x\}$ is complete. What can you say about x?

2. What can you say about *X* if $X \cup \{X\} = X$.

3. A set *X* is \in -connected if for any two distinct elements *x*, *y* of *X*, either $x \in y$ or $y \in x$.

3a. Give infinitely many examples of \in -connected sets.

3b. Show that a subset of an \in -connected set is \in -connected.

3c. Show that if *X* is \in -connected, then $X \cup \{X\}$ is also \in -connected.

3d. Assume $\{x\}$ is \in -connected. What can you say about x?

4. Axiom of Regularity says that every nonempty set *A* has an element *x* such that $A \cap x = \emptyset$.

4a. Assuming the Axiom of Regularity show that no set x is a member of itself.

4b. Assuming the Axiom of Regularity show that there are no sets x and y such that $x \in y$ and $y \in x$.

4c. Assuming the Axiom of Regularity show that if $A \subseteq A \times A$, then $A = \emptyset$.