Math 111

Final Exam
Ali Nesin
5-June-1998

1. ($\mathbf{5} \mathbf{~ p t s .) ~ W h a t ~ i s ~ t h e ~ i n t e r s e c t i o n ~ o f ~ a l l ~ t h e ~ s u b s e t s ~ o f ~} \mathbb{R}$ whose complement is finite.
2. Let $\left(X_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of sets. Define:
$\liminf X_{n}=\left\{x\right.$: there is an N such that $x \in X_{n}$ for all $\left.n>N\right\}$
limsup $X_{n}=\left\{x: x \in X_{n}\right.$ for infinitely many $\left.n\right\}$.
2a. (1 pts.) Show that liminf $X_{n} \subseteq \limsup X_{n}$ always.
2b. ($\mathbf{2} \mathbf{~ p t s}$.) Show that for any integer n, the sets liminf X_{n} and limsup X_{n} are independent of the sets $X_{0}, X_{1}, \ldots, X_{n-1}$.

2c. (4 pts.) Show that if $X_{n} \subseteq Y_{n}$ for all but finitely many n, then liminf $X_{n} \subseteq \liminf$ Y_{n} and limsup $X_{n} \subseteq \limsup Y_{n}$.

2d. (8 pts.) Prove or disprove
$\limsup \left(X_{n} \cup Y n\right)=\limsup Y_{n} \cup \limsup X_{n}$ $\limsup \left(X_{n} \cap Y n\right)=\limsup Y_{n} \cap \limsup X_{n}$
$\liminf \left(X_{n} \cap Y n\right)=\liminf Y_{n} \cap \liminf X_{n}$. $\liminf \left(X_{n} \cup Y n\right)=\liminf Y_{n} \cup \liminf X_{n}$.
2e. (4 pts.) Show that

$$
\limsup X_{n}=\bigcup_{n}\left(\bigcap_{i=n}^{\infty} X_{i}\right)
$$

and

$$
\liminf X_{n}=\bigcap_{n}\left(\bigcup_{i=n}^{\infty} X_{i}\right)
$$

2f. (2 pts.) Show that liminf $X_{n}{ }^{\mathrm{c}}=\left(\limsup X_{n}\right)^{\mathrm{c}}$ where X^{c} denotes the complement of the set X in some set containing all the sets X_{n}.

2g. (4 pts.) Define $\lim X_{n}=X$ iff $\liminf X_{n}=X=\limsup X_{n}$. Show that if the sets X_{n} are decreasing (i.e. $X_{n+1} \subseteq X_{n}$ for all n) or increasing (i.e. $X_{n} \subseteq X_{n+1}$ for all n), then $\lim X_{n}$ exists.
$\mathbf{2 h}$. Find the limsup, liminf and lim (if it exists) of the following sequences of sets:
i) (2 pts.) $X_{n}=\{z \in \mathbb{N}: n<z \leq 2 n\}$.
ii) (2 pts.) $X_{n}=\left\{\begin{array}{ll}{[0, n]} & \text { if } n \text { is even } \\ {[-1 / n, 0]} & \text { if } n \text { is odd }\end{array}\right.$ (these are real intervals).
3. (6 pts.) Does the set $\left\{\alpha \in \operatorname{Sym}(8): \alpha^{6}=\operatorname{Id}\right\}$ form a subgroup of $\operatorname{Sym}(8)$? Justify your answer.
4. ($\mathbf{1 2} \mathbf{p t s .)}$ Check that the subset $\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x+y$ is even $\}$ is a subgroup of $\mathbb{Z} \times \mathbb{Z}$ and that it is the smallest subgroup containing the elements $(1,1)$ and $(1,-1)$.
5. ($\mathbf{9} \mathbf{p t s}$.) Is the smallest subgroup of (the multiplicative) group $\mathbb{Q}^{>0}$ containg 8 and 12 equal to the smallest subgroup containing 2 and 3 ? Justify your answer.
6. Let I be a set and G a group. Define,
$\Pi_{I} G$ to be the set of all the functions from I into G and $\oplus_{I} G$ to be the set of functions f from I into G for which $f(i)=1$ for all but finitely many $i \in I$.

For f and g in $\Pi_{I} G$, define $f g \in \Pi_{I} G$ as follows:

$$
(f g)(i)=f(i) g(i) \text { for all } i \in I .
$$

6a. (8 pts.) Show that $\Pi_{I} G$ is a group under this product and that $\oplus_{I} G$ is a normal subgroup of $\Pi_{I} G$.

6b. (4 pts.) Show that if G is abelian, then so is $\Pi_{I} G$.
7. Let G be a group and X a set. Assume that there is a map $\varphi: G \times X \rightarrow X$ that satisfies the following conditions (we write $g x$ instead of $\varphi(g, x)$ for $(g, x) \in G \times X)$:
i) $g(h x)=(g h) x$ for all $g, h \in G$ and $x \in X$.
ii) $1 x=x$ for all $x \in X$.

7a. (7 pts.) Show that the set $R(\varphi):=\{g \in G: g x=x$ for all $x \in X\}$ is a normal subgroup of G.

7b. (7 pts.) For $\bar{g} \in G / R(\varphi)$ and $x \in X$, define $\bar{g} x=g x$. Show that this definition makes sense (i.e. show that the product $\bar{g} x$ is well-defined, i.e. that it depends only on the class \bar{g} of g and not on the choice of g).

7c. (7 pts.) Show that $\bar{\varphi}: G / R(\varphi) \times X \rightarrow X$ defined by $\bar{\varphi}(\bar{g}, x)=\bar{g} x$ satisfies i and ii.

7d. (6 pts.) Show that $R(\bar{\varphi})=1$.

