Math 111 Final Exam Ali Nesin 5-June-1998

1. (5 pts.) What is the intersection of all the subsets of \mathbb{R} whose complement is finite.

2. Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of sets. Define:

liminf $X_n = \{x : \text{there is an } N \text{ such that } x \in X_n \text{ for all } n > N\}$

limsup $X_n = \{x : x \in X_n \text{ for infinitely many } n\}.$

2a. (1 pts.) Show that $\liminf X_n \subseteq \limsup X_n$ always.

2b. (2 pts.) Show that for any integer *n*, the sets limit X_n and limsup X_n are independent of the sets X_0, X_1, \dots, X_{n-1} .

2c. (4 pts.) Show that if $X_n \subseteq Y_n$ for all but finitely many *n*, then limit $X_n \subseteq$ limit Y_n and limsup $X_n \subseteq$ limsup Y_n .

2d. (8 pts.) Prove or disprove

 $\limsup (X_n \cup Y_n) = \limsup Y_n \cup \limsup X_n$ $\limsup (X_n \cap Y_n) = \limsup Y_n \cap \limsup X_n$ $\liminf (X_n \cap Y_n) = \liminf Y_n \cap \liminf X_n.$

 $\liminf (X_n \cup Yn) = \liminf Y_n \cup \liminf X_n.$

2e. (4 pts.) Show that

limsup
$$X_n = \bigcup_n \left(\bigcap_{i=n}^{\infty} X_i \right)$$

and

$$\operatorname{liminf} X_n = \bigcap_n \left(\bigcup_{i=n}^{\infty} X_i \right).$$

2f. (2 pts.) Show that $\liminf X_n^c = (\limsup X_n)^c$ where X^c denotes the complement of the set X in some set containing all the sets X_n .

2g. (4 pts.) Define $\lim X_n = X$ iff $\liminf X_n = X = \limsup X_n$. Show that if the sets X_n are decreasing (i.e. $X_{n+1} \subseteq X_n$ for all n) or increasing (i.e. $X_n \subseteq X_{n+1}$ for all n), then $\lim X_n$ exists.

2h. Find the limsup, liminf and lim (if it exists) of the following sequences of sets:

i) (2 pts.)
$$X_n = \{z \in \mathbb{N} : n < z \le 2n\}$$
.
ii) (2 pts.) $X_n = \begin{cases} [0,n] & \text{if } n \text{ is even} \\ [-1/n,0] & \text{if } n \text{ is odd} \end{cases}$ (these are real intervals).

3. (6 pts.) Does the set { $\alpha \in Sym(8)$: $\alpha^6 = Id$ } form a subgroup of Sym(8)? Justify your answer.

4. (12 pts.) Check that the subset $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y \text{ is even}\}$ is a subgroup of $\mathbb{Z} \times \mathbb{Z}$ and that it is the smallest subgroup containing the elements (1, 1) and (1, -1).

5. (9 pts.) Is the smallest subgroup of (the multiplicative) group $\mathbb{Q}^{>0}$ containg 8 and 12 equal to the smallest subgroup containing 2 and 3? Justify your answer.

6. Let *I* be a set and *G* a group. Define,

 $\Pi_I G$ to be the set of all the functions from *I* into *G* and $\oplus_I G$ to be the set of functions *f* from *I* into *G* for which f(i) = 1 for all but finitely many $i \in I$.

For *f* and *g* in $\Pi_I G$, define $fg \in \Pi_I G$ as follows:

(fg)(i) = f(i)g(i) for all $i \in I$.

6a. (8 pts.) Show that $\Pi_I G$ is a group under this product and that $\bigoplus_I G$ is a normal subgroup of $\Pi_I G$.

6b. (4 pts.) Show that if *G* is abelian, then so is $\Pi_I G$.

7. Let *G* be a group and *X* a set. Assume that there is a map $\varphi: G \times X \to X$ that satisfies the following conditions (we write *gx* instead of $\varphi(g,x)$ for $(g, x) \in G \times X$):

i) g(hx) = (gh)x for all $g, h \in G$ and $x \in X$.

ii) lx = x for all $x \in X$.

7a. (7 pts.) Show that the set $R(\varphi) := \{g \in G : gx = x \text{ for all } x \in X\}$ is a normal subgroup of *G*.

7b. (7 pts.) For $\overline{g} \in G/R(\varphi)$ and $x \in X$, define $\overline{g} x = gx$. Show that this definition makes sense (i.e. show that the product $\overline{g} x$ is well-defined, i.e. that it depends only on the class \overline{g} of g and not on the choice of g).

7c. (7 pts.) Show that $\overline{\varphi}$: $G/R(\varphi) \times X \to X$ defined by $\overline{\varphi}(\overline{g}, x) = \overline{g} x$ satisfies i and ii.

7d. (6 pts.) Show that $R(\overline{\varphi}) = 1$.