Math 111 Midterm 1 Correction; November 1997 Ali Nesin

1. For two natural numbers *n* and *m*, we say that *m* divides *n* if there is a natural number *x* such that n = mx. We denote this by $m \mid n$.

1a. Show that $n \mid n$.

1b. Show that if $p \mid m$ and $m \mid n$, then $p \mid n$.

1c. Show that if $n \mid m$ and $m \mid n$ then n = m.

Correction of 1a. We need to find an *x* such that n = nx. Since n = n1, we can take x = 1.

1b. Since $p \mid m$ and $m \mid n$, there are x and y such that m = px and n = my. We need to find a z such that n = pz. We have,

$$n = my = (px)y = p(xy).$$

Therefore it is enough to take z = xy.

1c. Since $n \mid m$ and $m \mid n$, there are x and y such that m = nx and n = my. we have, n = my = (nx)y = n(xy).

If $n \neq 0$, by simplifying, we get xy = 0, hence x = 1 and m = nx = n1 = n. If n = 0, m = nx = 0x = 0 = n, again the equality.

2. A natural number *p* is called **prime** if $p \neq 1$ and *p* is divisible only by 1 and *p*.

Show that any natural number $\neq 1$ is divisible by a prime. (**Hint:** Let *a* be a natural number. Define $X_a = \{x \in \mathbb{N}: x \mid a\}$. Show that the smallest element of X_a (why does it exist?) is prime).

3. Let *X* and *Y* be two sets and $f: X \to Y$ a function. For any two subsets *A* and *B* of *X* and any two subsets *C* and *D* of *Y* show the following:

3a. $f(A \cup B) = f(A) \cup f(B)$. **3b.** $f(A \cap B) \subseteq f(A) \cap f(B)$. **3c.** Give an example where the equality in 3b does not hold. **3d.** $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. **3e.** $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

4. Show that for any positive natural number,

 $\frac{1}{1}\frac{1}{3} + \frac{1}{3}\frac{1}{5} + \frac{1}{5}\frac{1}{7} + \dots + \frac{1}{2n-1}\frac{1}{2n+1} = \frac{n}{2n+1}$

5. Let *A* be a nonempty subset of \mathbb{Z} satisfying the following property:

For all a and b of A, a - b is also in A.

(*)

5a. Show that $0 \in A$.

5b. Show that if $a \in A$, then $-a \in A$.

5c. Show that if *a* and *b* are in *A*, then $a + b \in A$.

5d. Give 5 examples of nonempty subsets *A* of \mathbb{Z} that satisfies (*).

5e*. Find all the nonempty subsets of \mathbb{Z} that satisfies (*).