Math 111

Midterm 1 Correction; November 1997
Ali Nesin

1. For two natural numbers n and m, we say that m divides n if there is a natural number x such that $n=m x$. We denote this by $\left.m\right|_{n}$.

1a. Show that $n \mid n$.
1b. Show that if $\left.p\right|_{m}$ and $m \mid n$, then $\left.p\right|_{n}$.
1c. Show that if $n \mid m$ and $m \mid n$ then $n=m$.
Correction of 1a. We need to find an x such that $n=n x$. Since $n=n 1$, we can take $x=1$.

1b. Since $\left.p\right|_{m}$ and $\left.m\right|_{n \text {, there }}$ are x and y such that $m=p x$ and $n=m y$. We need to find a z such that $n=p z$. We have,

$$
n=m y=(p x) y=p(x y) .
$$

Therefore it is enough to take $z=x y$.
1c. Since $\left.n\right|_{m}$ and $\left.m\right|_{n}$, there are x and y such that $m=n x$ and $n=m y$. we have,

$$
n=m y=(n x) y=n(x y) .
$$

If $n \neq 0$, by simplifying, we get $x y=0$, hence $x=1$ and $m=n x=n 1=n$. If $n=0, m=n x=$ $0 x=0=n$, again the equality.
2. A natural number p is called prime if $p \neq 1$ and p is divisible only by 1 and p.

Show that any natural number $\neq 1$ is divisible by a prime. (Hint: Let a be a natural number. Define $X_{a}=\{x \in \mathbf{N}: x \mid a\}$. Show that the smallest element of X_{a} (why does it exist?) is prime).
3. Let X and Y be two sets and $f: X \rightarrow Y$ a function. For any two subsets A and B of X and any two subsets C and D of Y show the following:

3a. $f(A \cup B)=f(A) \cup f(B)$.
3b. $f(A \cap B) \subseteq f(A) \cap f(B)$.
3c. Give an example where the equality in 3b does not hold.
3d. $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$.
3e. $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
4. Show that for any positive natural number,

$$
\frac{1}{1} \frac{1}{3}+\frac{1}{3} \frac{1}{5}+\frac{1}{5} \frac{1}{7}+\ldots+\frac{1}{2 n-1} \frac{1}{2 n+1}=\frac{n}{2 n+1}
$$

5. Let A be a nonempty subset of \mathbb{Z} satisfying the following property: For all a and b of $A, a-b$ is also in A.
5a. Show that $0 \in A$.
5b. Show that if $a \in A$, then $-a \in A$.
5c. Show that if a and b are in A, then $a+b \in A$.
5d. Give 5 examples of nonempty subsets A of \mathbb{Z} that satisfies (*).
$\mathbf{5} \mathbf{e}^{*}$. Find all the nonempty subsets of \mathbb{Z} that satisfies $\left(^{*}\right)$.
