1. Let X be a set and R be a binary relation on X. Show that there is a least equivalence relation \equiv on X such that for all $x, y \in X$ if $x R y$ then $x \equiv y$.

2. Let $(X_n)_n$ be a sequence of subsets of a set X. We define $\liminf X_n$ and $\limsup X_n$ as follows:

 An element a of X belongs to $\liminf X_n$ if and only if there exists a natural number n_0 such that a is in X_n for all $n > n_0$.

 An element a of X belongs to $\limsup X_n$ if and only if for every natural number n_0 there exists an index $n > n_0$ such that a is in X_n.

 2i. Show that $\limsup X_n$ consists of those elements which are in X_n for infinitely many n, while $\liminf X_n$ consists of those elements which are in X_n for all but finitely many n.

 2ii. Show that $\liminf X_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} X_m$ and that $\limsup X_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} X_m$.

 2iii. Let $X_n = \{ n, n+1, \ldots, 2n \}$. Find $\liminf X_n$ and $\limsup X_n$.

 2iv. Assume $X_{n+1} \subseteq X_n$ for all n. Find $\liminf X_n$ and $\limsup X_n$.

 2v. Find an example where $\liminf X_n \neq \limsup X_n$.

3. Let R be a commutative ring with 1. Let \leq be a total order on R such that for all $x, y, z \in R$,

 a) if $x \leq y$ then $x + z \leq y + z$.
 b) if $0 < x$ and $0 < y$ then $0 < xy$.

 Show that for all $x, y, z \in R$

 3i. If $x < y$ then $-y < -x$.
 3ii. If $x < y$ then $x + z < y + z$.
 3iii. If $x \leq y$ and $0 \leq z$ then then $xz \leq yz$.
 3iv. If $x \leq y$ and $0 \geq z$ then $xz \geq yz$.
 3v. $-1 < 0 < 1$.
 3vi. If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.
 3vii. $x^2 \geq 0$.
 3viii. If $x < 0$ then x is not a sum of squares in R.
 3ix. -1 is not a sum of squares in R.

 3x. If $x \geq 0$ and x has a multiplicative inverse in R then $x^{-1} > 0$.

 Define $|x|$ as follows: $|x| = x$ if $x \geq 0$ and $|x| = -x$ if $x \leq 0$.

 3xi. Show that $|x| \geq 0$.
 3xii. Show that $|xy| = |x| |y|$.
 3xiii. Show that $|x + y| \leq |x| + |y|$.
 3xiv. Show that $|x - y| \geq |x| - |y|$.

 Define $d(x, y) = |x - y|$.

 3xv. Show that $d(x, y) = 0$ if and only if $x = y$.
 3xvi. Show that $d(x, y) = d(y, x)$.
3xvii. Show that \(d(x, y) \leq d(x, z) + d(z, y) \).
The last three properties show that \(d \) is a metric on \(R \).

3xviii. Show that the maps \(R \times R \rightarrow R \) defined by \((x, y) \mapsto x - y \) and \((x, y) \mapsto xy \) and