Math 111

Final
2006 Fall

1. Let X be a set and R be a binary relation on X. Show that there is a least equivalence relation \equiv on X such that for all $x, y \in X$ if $x R y$ then $x \equiv y$.
2. Let $\left(X_{n}\right)_{n}$ be a sequence of subsets of a set X. We define liminf X_{n} and limsup X_{n} as follows:

An element a of X belongs to liminf X_{n} if and only if there exists a natural number n_{0} such that a is in X_{n} for all $n>n_{0}$.

An element a of X belongs to limsup X_{n} if and only if for every natural number n_{0} there exists an index $n>n_{0}$ such that a is in X_{n}.

2i. Show that limsup X_{n} consists of those elements which are in X_{n} for infinitely many n, while liminf X_{n} consists of those elements which are in X_{n} for all but finitely many n.

2ii. Show that

$$
\liminf X_{n}=\bigcup_{n=1}^{\infty}\left(\bigcap_{m=n}^{\infty} X_{m}\right)
$$

and that

$$
\limsup X_{n}=\bigcap_{n=1}^{\infty}\left(\bigcup_{m=n}^{\infty} X_{m}\right)
$$

2iii. Let $X_{n}=\{n, n+1, \ldots, 2 n\}$. Find liminf X_{n} and limsup X_{n}.
2iv. Assume $X_{n+1} \subseteq X_{n}$ for all n. Find liminf X_{n} and limsup X_{n}.
2v. Find an example where $\liminf X_{n} \neq \limsup X_{n}$.
3. Let R be a commutative ring with 1 . Let \leq be a total order on R such that for all $x, y, z \in$ R,
a) if $x \leq y$ then $x+z \leq y+z$.
b) if $0<x$ and $0<y$ then $0<x y$.

Show that for all $x, y, z \in R$
3i. If $x<y$ then $-y<-x$.
3ii. If $x<y$ then $x+z<y+z$.
3iii. If $x \leq y$ and $0 \leq z$ then then $x z \leq y z$.
3iv. If $x \leq y$ and $0 \geq z$ then then $x z \geq y z$.
3v. $-1<0<1$.
3vi. If $x \neq 0$ and $y \neq 0$ then $x y \neq 0$.
3vii. $x^{2} \geq 0$.
3viii. If $x<0$ then x is not a sum of squares in R.
3ix. -1 is not a sum of squares in R.
3x. If $x \geq 0$ and x has a multiplicative inverse in R then $x^{-1}>0$.
Define $|x|$ as follows: $|x|=x$ if $x \geq 0$ and $|x|=-x$ if $x \leq 0$.
3xi. Show that $|x| \geq 0$.
3xii. Show that $|x y|=|x||y|$.
3xiii. Show that $|x+y| \leq|x|+|y|$.
3xiv. Show that $|x-y| \geq||x|-|y||$.
Define $d(x, y)=|x-y|$.
3xv. Show that $d(x, y)=0$ if and only if $x=y$.
3xvi. Show that $d(x, y)=d(y, x)$.

3xvii. Show that $d(x, y) \leq d(x, z)+d(z, y)$.
The last three properties show that d is a metric on R.
3xviii. Show that the maps $R \times R \rightarrow R$ defined by $(x, y) \mapsto x-y$ and $(x, y) \mapsto x y$ and

