Math 111 Final 2006 Fall

1. Let *X* be a set and *R* be a binary relation on *X*. Show that there is a least equivalence relation \equiv on *X* such that for all *x*, *y* \in *X* if *xRy* then *x* \equiv *y*.

2. Let $(X_n)_n$ be a sequence of subsets of a set *X*. We define limit X_n and limsup X_n as follows:

An element *a* of *X* belongs to liminf X_n if and only if there exists a natural number n_0 such that *a* is in X_n for all $n > n_0$.

An element *a* of *X* belongs to limsup X_n if and only if for every natural number n_0 there exists an index $n > n_0$ such that *a* is in X_n .

2i. Show that $\limsup X_n$ consists of those elements which are in X_n for infinitely many n, while $\liminf X_n$ consists of those elements which are in X_n for all but finitely many n.

2ii. Show that

$$\operatorname{liminf} X_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{m=n}^{\infty} X_m \right)$$

and that

limsup
$$X_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{m=n}^{\infty} X_m \right).$$

2iii. Let $X_n = \{n, n+1, ..., 2n\}$. Find liminf X_n and limsup X_n . **2iv.** Assume $X_{n+1} \subseteq X_n$ for all *n*. Find liminf X_n and limsup X_n . **2v.** Find an example where liminf $X_n \neq \text{limsup } X_n$.

3. Let *R* be a commutative ring with 1. Let \leq be a total order on *R* such that for all $x, y, z \in R$,

a) if $x \le y$ then $x + z \le y + z$. **b**) if 0 < x and 0 < y then 0 < xy. Show that for all $x, y, z \in R$ **3i.** If x < y then -y < -x. **3ii.** If x < y then x + z < y + z. **3iii.** If $x \le y$ and $0 \le z$ then then $xz \le yz$. **3iv.** If $x \le y$ and $0 \ge z$ then then $xz \ge yz$. **3v.** -1 < 0 < 1. **3vi.** If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$. **3vii.** $x^2 \ge 0$. **3viii.** If x < 0 then x is not a sum of squares in R. **3ix.** -1 is not a sum of squares in *R*. **3x.** If $x \ge 0$ and x has a multiplicative inverse in R then $x^{-1} > 0$. Define |x| as follows: |x| = x if $x \ge 0$ and |x| = -x if $x \le 0$. **3xi.** Show that $|x| \ge 0$. **3xii.** Show that |xy| = |x| |y|. **3xiii.** Show that $|x + y| \leq |x| + |y|$. **3xiv.** Show that $|x - y| \ge ||x| - |y||$. Define d(x, y) = |x - y|. **3xv.** Show that d(x, y) = 0 if and only if x = y. **3xvi.** Show that d(x, y) = d(y, x).

3xvii. Show that $d(x, y) \le d(x, z) + d(z, y)$. The last three properties show that *d* is a metric on *R*. **3xviii.** Show that the maps $R \times R \to R$ defined by $(x, y) \mapsto x - y$ and $(x, y) \mapsto xy$ and